¼Æ½×¬O¼Æ¾Çùس̥j¦Ñªº¤@ªù¤À¤ä¡A¨ä¤¤¥Rº¡³\¦h²LÅã©öÀ´ªº°ÝÃD¥H¤Î°g¤Hªº²q·Q¡CµM¦Ó¡A¦b¼Æ½×°ÝÃDªº¨D¸Ñ¹Lµ{¡A¥i¯à¨Ï¥Î¨ì¦U¦¡¦U¼Ëªº¼Æ¾Ç¤u¨ã¡A¨Ò¦p¥N¼Æ¾Ç¤Î½ÆÅܼƨç¼Æ½×µ¥µ¥¡C¦]¬°¨Ï¥Îªº¤u¨ã¤£¦P¡A¼Æ½×µo®i¥X¨â®M¿W¯Sªº²z½×¡AºÙ¬°¥N¼Æ¼Æ½×(Algebraic number theory)¤Î¸ÑªR¼Æ½×(Analytic number theory)¡C¥N¼Æ¼Æ½×ªº¬ã¨s¦bClass field theory§¹¦¨¤§«á¹F¨ì¬YºØÅq®pªºª¬ºA¡A³o®M²z½×¦b19¥@¬ö¥½¨ì20¥@¬öªìµÞªÞ¡A¨ì1930¦~¥N¦b«Ü¦h¼Æ¾Ç®aªº¦@¦P§V¤O¤U³v¨B§¹¦¨¡C²³æ¦a»¡¡AClass field theory¬O´yz¤@Ó¼ÆÅé(number fields)ªº²z·QÃþ¸s(ideal class groups)¤Î¨ä¥æ´«ÂX±i(abelian
extensions)ªº¹ïÀ³Ãö«Y¡C
¥N¼Æ¼Æ½×¦b¥»¨t¬O¨â¾Ç´Áªº¿ï×½Ò¡C¤W¾Ç´Áº¥ý¤¶²Ð¥N¼Æ¾ã¼ÆÀôªº°ò¥»©Ê½è¡Aºò±µµÛ·|µÛ«©óglobal fields ©Mlocal fieldsªº¯S¦³©Ê½èªº±´°Q¡C¤U¾Ç´Á§ÚÌ´Á±æ¥i¥H§¹¾ã¦a¤¶²Ðglobal class field theory ¨Ã¥B¤¶²Ð³¡¤Àªºlocal class field theory.
¸Ô²Óªº½Òµ{¤º®e¦p¤U¡G
²Ä¤@¾Ç´Á: Basic Theory
- Basic properties of the ring of algebraic integers
- Completions
- The different and the discriminant
- Cyclotomic fields
- Ideles and Adeles
- The Zeta functions and L-series
²Ä¤G¾Ç´Á: Class Field Theory
- Norm index computations
- The Artin symbol and reciprocity law
- The existence theorem of class field theory
- Local class field theory
°Ñ¦Ò±Ð§÷:
- E. Artin and J. Tate, Class Field Theory, Benjamin, New York, 1967.
- J. W. S. Cassels and A. Frohlich, Algebric Number Theory, Academic Press, 1968.
- S. Lang, Algebraic Number Theory, Springer-Verlag, GTM110, 1970.
|