¡@
¡@
¡@
Ápµ¸§Ú­Ì ºô¯¸¦a¹Ï ¤¤¥¡¤j¾Ç
¡@
¡@
¡@
¡@ ¡@
½Òµ{²¤¶
¡@
½Òµ{¦WºÙ ´X¦ó
±Â½Ò¹ï¶H ¤j¾Ç³¡°ª¦~¯Å¥Í
¹w³Æª¾ÃÑ ½u©Ê¥N¼Æ»P¦hÅܼƷL¿n¤À
¨ä¥L±ø¥ó

´X¦ó¾Çªºµo®i¥i¥H¤j²¤°Ï¤À¬°¤T­Ó®É´Á¡C(1) ¥j¨åªº Euclid ´X¦ó¾Ç (2) ¤åÃÀ´_¿³®É´Á¤§«áªººî¦X´X¦ó¾Ç¡A¦p®g¼v´X¦ó¡A¥H¤Î (3) ¤Q¤E¥@¬ö¥Ñ Gauss, Riemann ¶}©l¥H¦Ü©óªñ¥Nªº·L¤À´X¦ó¾Ç¡C³o¤T­Ó®É´Áªº´X¦ó¾Ç¦b¾ú¥vªºµo®i¤W¦³¨ä©µÄò©Ê»P¥²µM©Ê¡AµM¦Ó¨ä¬ã¨sªº¤èªk»P©ÒµÛ­«ªº¤è¦V«o¾ú¸g³\¦hÅÜ­²¡C¹ï¼Æ¾Ç¨tªº¦P¾Ç¡A³q±`¦b¤¤¾Ç®É¥N´N¤w¸g±µÄ²¤F¤@©wµ{«×ªº¤Ø³W§@¹Ï¥H¤Î´X¦óÃÒ©úªº°V½m¡A¦]¦¹¹ï©ó (1) ¤@¯ë¤£·|·P¨ì­¯¥Í¡C¦ý¬O¯u¥¿ÄYÂÔªº Euclid ¤½²z¨t²Î«o¤@ª½¨ì¤G¤Q¥@¬öªìªº Hilbert ¤½²z¤~§¹¥þ½T¥ß¡C³o¤@ÂI­È±o¦V¦P¾Ç¤¶²Ð¡Cºî¦X´X¦óùئ³³¡¤ÀÃD§÷¤]­È±o¾A«×±´°Q¥H§U©ó´X¦ó¾ú¥vÆ[ªº«Ø¥ß¡C

Gauss, Riemannªº·L¤À´X¦ó¾Ç¬O²{¥N´X¦ó¾Çªº®Ö¤ß¡C·L¤À´X¦ó¹ï©ó¯Âºé¼Æ¾Ç¡BÀ³¥Î¼Æ¾Ç¡B¼Æ¾Çª«²z¡B¤uµ{¡A¤D¦Ü©ó¹q¸£ªº3D¹Ï¾Ç³£§êºt­«­n¨¤¦â¡C¤j¾Çªº´X¦ó½Òµ{À³¥H·L¤À´X¦ó¬°¥D­n¥Ø¼Ð¡C¦ý§¹¾ãªº·L¤À´X¦ó»Ý­n¸û¦hªº¼Æ¾Ç°ò¦¡A¦]¦¹¤j¾Ç´X¦óµÛ­«©ó¤T«×ªÅ¶¡ªº¦±½u½×»P¦±­±½×¡C©Ò»Ý­nªº¼Æ¾Ç°ò¦¥þ³¡³£§t»\¦b¤j¤@¡B¤j¤Gªº¥²­×½Ò¤¤¡C°£¤F½u©Ê¥N¼Æ»P¦hÅܼƷL¿n¤À¡A¼ô±x°ªµ¥·L¿n¤À¤¤ªºÁô¨ç¼Æ©w²z»P±`·L¤À¤èµ{ªº¦s¦b°ß¤@©w²z¹ï©ó¾Ç²ß¤j¾Ç´X¦ó¦³«Ü¤jªºÀ°§U¡C

¦±½u½×¥]§t Frenet ¼Ð¬[ªk»P¾ãÅ馱½u½×¡C¦p¥­­±¤Wªºµ¥©P¤£µ¥¦¡¡Arotation index »PªÅ¶¡¤¤Ã·µ²²z½×ªºÂ²¤¶¡C¦±­±³Ì­«­nªº¤º®e¬O Gauss ¦±²v¡A¥]¬A§½³¡­pºâ¡A¦p Theorema Egregium, Gauss-Codazzi ¤èµ{¡A»P¾ãÅé©Ê½è¡A¦p Gauss-Bonnet ©w²z¡C Gauss-Bonnet ©w²zªº«ä·Q¡AÃÒ©ú»PÀ³¥Î§e²{¤F´X¦ó¡B©Ý¾ë¡B¤ÀªR¤§¶¡¥©§®¦Ó§¹¬üªºµ²¦X¡C¦Ó¦@ÅÜ·L¤ÀªºÆ[©À§ó¬O¨ä¤¤ªº®Ö¤ß¡CRiemann ´X¦ó¾Ç±N¶È§@³Ì°ò¥»ªº©â¶H¦±­±¡A¦p Poincare ¤W¥b¥­­±¡A»P´ú¦a½uªº¤¶²Ð¡A¥H¹F¨ì¯à¤F¸Ñ¥­¦æ¤½²z»P«D¼Ú´X¦ó¬°¥D¡C¦pªG®É¶¡³\¥i¡A¤]¥i¥H½Í½Í Hilbert Ãö©óÂù¦±¥­­±¤£¯àµ¥¶Z¦a°É¤J¤Tºû¼Þ¦¡ªÅ¶¡ªºº}«G©w²z¡C

¥H¤U¬°±`¥Î¤§°Ñ¦Ò¤åÄm:

  • Do Carmo ©ÒµÛªº Differential Geometry of Curves and Surfaces ¬°±`¥Îªº±Ð§÷¡C
  • H. Hopf ªº¦WµÛ Differential Geometry in the Large ¬°±`¥Îªº°Ñ¦ÒµÛ§@¡C


¡@

¡@
¤j¾Ç³¡½Òµ{¤¶²Ð
¡@
·L¿n¤À
½u©Ê¥N¼Æ
­pºâ¾÷·§½×
¾ã¼Æ½×
À³¥Î¥N¼Æ
°ªµ¥·L¿n¤À
¥N¼Æ
¸ê®Æµ²ºc
·L¤À¤èµ{
²Õ¦X»y¨¥
½ÆÅܨç¼Æ½×
À³¥Î¾÷²v
¼Æ­È¤ÀªR
Â÷´²¼Æ¾Ç
¼Æ²z²Î­p
¯x°}­pºâ
¹Ï½×
¼Æ¾Ç³W¹º
´X¦ó¾Ç
ÀH¾÷¼ÒÀÀ
­pºâªk«h
­pºâ´I¤ó¤ÀªR
·L¤À¤èµ{¼Æ­È¸Ñ
¥j¨åÅܤÀ¾Ç

¡@
¬ã¨s©Ò½Òµ{¤¶²Ð
¡@
¤ÀªR
·L¤À´X¦ó
µ{¦¡³]­p¤Î¨äÀ³¥Î
ªx¨ç¤ÀªR
²Î­p±À½×
¾÷²v½×
¥N¼Æ
¹êÅܨç¼Æ½×
¥N¼Æ´X¦ó
¥N¼Æ¼Æ½×
·L¤À¤èµ{
¼Æ­È¤ÀªR

¡@ ¡@

¡@
¡@
¡@
Copyright © 2006 NCU Department of Mathematics All Rights Reserved. ~ ¬°¨D³Ì¦n®ÄªG¡A«Øij¥HIE4.0¥H¤W¤§ª©¥»,1024*768 ¸ÑªR«×ÂsÄý¡@~ ºô¯¸«Ø¸m©ó2005¦~12¤ë ~
¡@