Page 123 - Vector Analysis
P. 123

§4.3 The Surface Integrals                                                                                                                              119

Example       4.49.      Let  Σ    Ď   R3  be      the    upper       half  sphere;        that     is,    Σ  =   ␣(x, y, z)      P       R3  ˇ  x2  +  y2  +
                                                                                                                                              ˇ

z2 = R2, z ą 0(, and tV, ψu be a global parametrization of Σ given by

           ψ(u, v) = (u, v,        ?R2 ´ u2 ´ v2) ,                   (u, v)      V    =   ␣(u, v)          R2    ˇ  u2    +  v2       R2( .
                                                                                                                  ˇ
                                                                              P                          P                        ď

To find the surface area using this parametrization, we first compute tψ,1 , ψ,2 u as follows:

           ψ,1  (u,  v)  =   (     0,  ?        ´u              )     and         ψ,2   (u,   v)   =  (       1,  ?        ´v                 )  ,
                              1,         R2     ´ u2                                                   0,           R2     ´ u2
                                                       ´  v2                                                                      ´       v2

thus the first fundamental form associated with the parametrization tV, ψu is

           g(u, v)   =   }ψ,1   (u, v)     ˆ   ψ,2  (u, v)}2R3        =  ›(              u       ´    ,    ?        v       ´        )›2
                                                                         ›?            ´ u2                  R2   ´ u2            ,1 ›
                                                                         › R2                       v2                          v2 ›R3

                     =   R2     R2     ´   v2   .
                              ´ u2

Therefore, the surface area of Σ is

                                                                                  ?
                                                                      żR      ż R2´u2
                ż    dS   =   ż    ?        R       ´ v2    dA     =                             ?          R     ´     v2  dvdu
                                     R2    ´ u2                         ´R        ?                R2      ´ u2
                  Σ             V                                               ´ R2´u2
                                                                           ?
                          =   R   żR    arcsin           v      u2                         du    =  R  żR     π      du    =  2πR2        .
                                                    ?                 ˇv= R2´u2
                                    ´R                                ˇ                                  ´R
                                                      R2 ´            ˇ?

                                                                       v=´ R2´u2

Note the the computation above also shows that the surface area of the sphere in R3 with
radius R is 4πR2 which is the same as what we have conclude in Example 4.48.

Remark 4.50. The example above provides one specific way of evaluating the surface

integrals: if the surface Σ is in fact a subset of the graph of a function f : D Ď R2 Ñ R;

that  is,  Σ  Ď  ␣x,  y,  f  (x,   y))  ˇ  (x,  y)  P  D(,      then     Σ  has      a  global        parametrization
                                        ˇ

                                                   ()                                      (x, y) P V ,
                                       ψ(x, y) = x, y, f (x, y) ,

where V is the projection of Σ onto the xy-plane along the z-direction. Then the first
fundamental form associated to this parametrization is

                 g(x,    y)  =  }ψ,1    (x,    y)  ˆ   ψ,2   (x, y)}2R3     =     1  +  ˇ  B  f  (x,  y)ˇˇ2   +   ˇ  B  f  (x,  y)ˇˇ2  ;
                                                                                        ˇ                         ˇ
                                                                                           Bx                        By

thus the surface area of Σ is

                              ż żc                                 f                       f

                                   dS =                1  +  ˇ  B     (x,  y)ˇˇ2  +  ˇ  B     (x,   y)ˇˇ2  d(x,   y)    .
                                                             ˇ                       ˇ
                                Σ V Bx                                                  By
   118   119   120   121   122   123   124   125   126   127   128