Page 124 - Vector Analysis
P. 124

(b)  On  the   sphere     x2 + y2 + z2           =  9,    the    outward         point    normal      vector       n     (x, y, z)   =     1  (x,  y,  z).
                                                                                                                                           3

     Therefore, by (0.1) (with f (x, y, z) = 3yez in mind),

                    y2ezdS =             3yez    y  dS  =                 ∂   (3yez  )dV  =          3 2π π
                                                 3                        ∂y
120               Σ                   Σ                             D                                            3eρ cos φρ2 sin φdφdθdρ

                                      3 2π                       φ=π                               C0 HA0PTER0 4. Vector Calculus

                                 = 3 −ρeρ cos φ dθdρ
                                                                   φ=0
Example           4.51.   Let    C  b0e  a3 0smooth                                       by
                                                          curve parameterized

                                 = 6π (ρeρ − ρe−ρ)dρ

                                             0                                            ρ=t3  P  [π       π]
                                                                                                    ´2,         .
                                r=(t6)π=(ρ(−cos1t)esρinρt=,3si−n t6sπi(n−t,ρc−os1t))e,−ρ  ρ=0
                                                             ρ=0                                            2

                                 = 12π(e3 + 2e−3) .                                                         []

The clearly C is on the unit sphere S2 since }r(t)}R3 = 1 for all t P                                          ´   π  ,  π  .  Since C is a
                                                                                                                   2     2
Probclloesmed 5c.urLveet, CC dbieviadesms So2otihntcoutrwveo ppaarratms. eLtreitzeΣd dbeynote the part with smaller area (see the

following figure), an⇀rd (wt)e=ar(ecoinsttesrienstte, dsinint sfiinndti,ncgostth)e, surfa−ceπ2a≤reat o≤f Σπ2..

                                                                          z

                                           xy

1. (10%) Show that the corresponding curve of ⇀r (t) on θφ-plane consists of two line segments                                                         L1
     To compute the             surface area     of Σ, we need to find             a way to        parameterize          Σ. Naturally we
 and     Lp2argaimveentebryize  Σ using the      spherical coordinate.             In other        words, let R          = (0, 2π) ˆ (0, π)
try to

and  ψ   :  R  ÑL1R=3 be(θd,eφfi)neθd=byφ , 0       ≤     φ  ≤   π     ,     L2 =    (θ, φ)        θ  =  π  −  φ,0       ≤  φ  ≤  π     .
                                                                 2                                                                2

2. (10%) Plot L1 and L2 onψ(tθh,eϕθ)φ=-p(lcaonseθ. sTinhϕe, csuinrvθesiCn ϕd,icvoisdϕes) ,the unit sphere into two parts,
   and let Σ be the part with smaller area. Identify the corresponding region of Σ on θφ-plane.

3.an(1d5w%e) wFoinudldtlhikeesutorfaficnedaareraegoifonΣ.D Ď R such that ψ(D) = Σ.
                                                                [            ]
                                      ()                         ´  π     π   ,
     Suppose that γ(t) = θ(t), φ(t) , t                      P      2  ,  2      is a curve in R such that (ψ ˝ γ)(t) = r(t).
                     [       ]                                                   implies that ϕ(t) = t; thus the identities
Then     for   t  P   0,  π   ,  the  identity      cos t    = cos ϕ(t)

                          2

cos t sin t = cos θ(t) sin ϕ(t) and sin t sin t = sin θ(t) sin ϕ(t) further imply that θ(t) = t.

     On     the   other   hand,       for  t  P  [  ´  π  ,   ]  the      identity   cos t      =  cos ϕ(t),   where           ϕ(t)  P  (0, π),
                                                       2     0,

implies that ϕ(t) = ´t; thus the identities cos t sin t = cos θ(t) sin ϕ(t) and sin t sin t =

sin θ(t) sin ϕ(t) further imply that θ(t) = π + t.
   119   120   121   122   123   124   125   126   127   128   129