Page 120 - Vector Analysis
P. 120

116 CHAPTER 4. Vector Calculus

Since a natural way to write Lv, where v = ae1 + be2 P R2, is
                                                    [     ]     [ ][          ]
                                [      ]...[ψ,2  ]     a         ∇ψ        a
             Lv              =   [ψ,1            ]     b     =             b     ,

sometimes we also use ∇ψ to denote L, and then write ?g as det(∇ψ) (even though [∇ψ]
is a 3 ˆ 2 matrix) and call ?g the Jacobian of the map ψ.

Example 4.46. Let Σ be the sphere centered at the origin with radius R. Consider the local
parametrization ψ(θ, ϕ) = (R cos θ sin ϕ, R sin θ sin ϕ, R cos ϕ) with (θ, ϕ) P V ” (0, 2π) ˆ
(0, π). Then

             ψ,1 (θ, ϕ) = ψθ(θ, ϕ) = (´R sin θ sin ϕ, R cos θ sin ϕ, 0) ,
             ψ,2 (θ, ϕ) = ψϕ(θ, ϕ) = (R cos θ cos ϕ, R sin θ cos ϕ, ´R sin ϕ) ;

thus the metric tensor and the first fundamental form associated with the parametrization

tV, ψu are

             g(θ,  ϕ)        =  [Dψ]T[Dψ](θ,           ϕ)    =  [    sin2  ϕ     ]
                                                                 R2  0        0
                                                                              R2

and g = det(g) = R4 sin2 ϕ.

What does the first fundamental form do for us?
                                                                                                  (

Let p = ψ)(u0, v0) be a point in Σ. Then the surface area of the region ψ [u0, u0 + h] ˆ
[v0, v0 + k] , where h, k are very small, can be approximated by the sum of the area of two
triangles, one with vertices ψ(u0, v0), ψ(u0 + h, v0), ψ(u0, v0 + k) and the other with vertices
ψ(u0 + h, v0), ψ(u0, v0 + k), ψ(u0 + h, v0 + k).

                                                 ψ(u0, v0 + k)

                                                          ψ(u0 + h, v0 + k)

                   ψ(u0, v0)

                                       ψ(u0 + h, v0)

Here we remark that the approximation of the surface area of a regular C 1-surface obeys

                                                 ()
                   the surface area of ψ [u0, u0 + h] ˆ [v0, v0 + k]
   lim       the sum of area of the two triangles given in the context              = 1.  (4.10)

(h,k)Ñ(0,0)
   115   116   117   118   119   120   121   122   123   124   125