Page 118 - Vector Analysis
P. 118

114 CHAPTER 4. Vector Calculus

f ˝ ψ : V Ñ Rn is differentiable at ψ´1(p). The derivative of f at p, denoted by dfp, is a
linear map on Tp Σ satisfying

                                    (dfp)(v)     =   dˇ           ˝  x)(t) ,
                                                       ˇ (f

                                                     dt ˇt=0

where x : (´δ, δ) Ñ Σ is a C 1-parametrization of a curve on Σ such that x(0) = p and

x 1(0) = v. A scalar function f : Σ Ñ R is said to be of class C 1 if f ˝ ψ is of class C 1 for

all local parametrization tV, ψu.

4.3.2 The metric tensor and the first fundamental form

Definition 4.41 (Metric). Let Σ Ď R3 be a regular surface. The metric tensor associated
with the local parametrization tV, ψu (at p P Σ) is the matrix g = [gαβ]2ˆ2 given by

                               gαβ  =  ψ,α ¨ψ,β  =    3  B ψi     B  ψi         in V

                                                     ÿ

                                                     i=1 B yα B yβ

or equivalently, g = [Dψ]T[Dψ].

Proposition 4.42. Let Σ Ď R3 be a regular surface, and g = [gαβ]2ˆ2 be the metric tensor
associated with the local parametrization tV, ψu (at p P Σ). Then the metric tensor g is

positive definite; that is,

                                2                        @v    =       2    Bψ     ‰  0.
                                                                            B yγ
                              ÿ gαβvαvβ ą 0                          ÿ vγ

                             α,β=1                                   γ=1

Proof. Since Dψ has full rank on V, every tangent vector v can be expressed as the linear

combination  of  !Bψ ,   B  ψ  )   Write  v  =    2  vγ  Bψ    .  Then      if  v  ‰  0,
                                .                        B yγ
                   B y1  B y2                   ř

                                                γ=1

                 0 ă }v}2R3         =   3     2  vα Bψi vβ Bψi           =     2

                                       ÿ     ÿ                               ÿ gαβvαvβ .

                                       i=1 α,β=1 B yα B ψβ                  α,β=1         ˝

Definition 4.43 (The first fundamental form). Let Σ Ď R3 be a regular surface, and
g = [gαβ]2ˆ2 be the metric tensor associated with the local parametrization tV, ψu (at
p P Σ). The first fundamental form associated with the local parametrization tV, ψu (at
p P Σ) is the scalar function g = det(g).

Theorem 4.44. Let Σ Ď R3 be a regular surface, and tV, ψu be a local parametrization at

p P Σ. Then                               ?g = }ψ,1 ˆψ,2 }R3 .

                                                                                          (4.8)
   113   114   115   116   117   118   119   120   121   122   123