Page 121 - Vector Analysis
P. 121

§4.3 The Surface Integrals                                                                                            117

The area of the triangle with vertices ψ(u0, v0), ψ(u0 + h, v0), ψ(u0, v0 + k) is

             A1  =     1  ››(ψ(u0  +   h, v0)  ´             )     ˆ   (          +  k)  ´  ψ(u0, v0))››R3      .
                       2                          ψ(u0, v0)             ψ(u0, v0

By the mean value theorem, for each component j P t1, 2, 3u, we have

                           ψj(u0 + h, v0) ´ ψj(u0, v0) = ψ,1 (u0 + θ1jh, v0)h ,
                           ψj(u0, v0 + k) ´ ψj(u0, v0) = ψ,2 (u0, v0 + θ2jk)k

for some θij P (0, 1); thus if ψ is of class C 1,

                       ψ(u0 + h, v0) ´ ψ(u0, v0) = ψ,1 (u0, v0)h + E1(u0, v0; h)h ,
                       ψ(u0, v0 + k) ´ ψ(u0, v0) = ψ,2 (u0, v0)k + E2(u0, v0; k)k ,

where E1 and E2 are bounded vector-valued functions satisfying that lim E1(u0, v0; h) = 0
                                                                                                                                         hÑ0

and lim E2(u0, v0; k) = 0. Therefore,
        kÑ0

             ( )( )
             ψ(u0 + h, v0) ´ ψ(u0, v0) ˆ ψ(u0, v0 + k) ´ ψ(u0, v0)
   lim                                       hk                                   ´ ψ,1 (u0, v0) ˆ ψ,2 (u0, v0) = 0 .

(h,k)Ñ(0,0)

Since ?g = }ψ,1 ˆψ,2 }R3, we have

                                   A1  =  1  ag(u0,       v0)hk    +   f1(u0, v0; h, k)hk
                                          2

for some function f1 which converges to 0 as (h, k) Ñ (0, 0) and is bounded since ∇ψ

is bounded. Similarly, the area of the triangle with vertices ψ(u0 + h, v0), ψ(u0, v0 + k),

ψ(u0 + h, v0 + k) is

                               A2      =  1  ag(u0,    v0    )hk   +  f2(u0, v0; h, k)hk    .
                                          2

Taking (4.10) into account, we find that

the  surface     area  of    (     u0  +     h]  ˆ  [v0,  v0  +     )  =  ag(u0,  v0)hk     +  f (u0,  v0;  h,  k)hk  (4.11)
                           ψ [u0,                                 k]

for some bounded function f (¨, ¨; ¨, ¨) which converges to 0 as the last two variables h, k
approach 0.

    Now consider the surface area of ψ([a, a + L] ˆ [b, b + W ]). Let ε ą 0 be given. Choose
N ą 0 such that

ˇˇf (u,  v;  h,  k)ˇˇ  ă    ε      @0 ă h ă         L  ,  0  ă  k  ă   W  and (u, v) P [a, a + L] ˆ [b, b + W ] ,
                          2LW                       N                  N
   116   117   118   119   120   121   122   123   124   125   126