Page 125 - Vector Analysis
P. 125

§4.3 The Surface Integrals                                                                                                  121

                            ϕ
                                                                   R

                            θ=ϕ                                                          θ
                               D = ψ´1(Σ)
                                              θ+ϕ=π

    Since the first fundamental form associate with tR, ψu is the first fundamental form

associated with tR, ψu is

            g(u, v) = ››(ψθ ˆ ψϕ)(u, v)››R2 3
                     = ››(´ sin θ sin ϕ, cos θ sin ϕ, 0) ˆ (cos θ cos ϕ, sin θ cos ϕ, ´ sin ϕ)››2R3
                     = ››(´ cos θ sin2 ϕ, ´ sin θ sin2 ϕ, ´(sin2 θ + cos2 θ) sin ϕ cos ϕ)››2R3
                     = (cos2 θ + sin2 θ) sin4 ϕ + sin2 ϕ cos2 ϕ = sin2 ϕ ,

the area of the desired surface can be computed by

    żż                      ?g                    ż  π  ż  π´ϕ                    ż  π
       dS =                                          2
                                          dA                    sin ϕ dθdϕ           2                sin
                                              =                               =             ´    2ϕ)       ϕ dϕ
                                                                                      (π

    Σ ψ´1(Σ)                                      0ϕ                                 0

          =   (  ´  π  cos      ϕ         +  2ϕ  cos  ϕ  ´  2  sin    ˇϕ=  π  =   π  ´2.
                                                                    ϕ)ˇ    2

                                                                    ˇϕ=0

Another way to parameterize Σ is to view Σ as the graph of function z = a1 ´ x2 ´ y2

over D, where D is the projection of Σ along z-axis onto xy-plane. We note that the

boundary of D can be parameterized by                                         tP  [ π π]         .
                            rr(t) = (cos t sin t, sin t sin t) ,                     ´   ,
                                                                                        2   2

Let (x, y) P B D. Then x2 + y2 = y; thus Σ can also be parameterized by ψ : D Ñ R3, where

    ψ(x,  y)  =  (          y,  a         ´   x2  ´     )      and  D  =      ␣(x,   y)  ˇ  x2   +  y2  ď  y(  .
                  x,               1                  y2                                 ˇ

Therefore, with f denoting the function f (x, y) = a1 ´ x2 ´ y2, Remark 4.50 implies that

the surface area of Σ can be computed by

                                             ?
                                ż 1 ż y´y2
żb                                                              1

   1 + fx2 + fy2 dA =                      ?            a1      x2     y2  dxdy

D                                      0  ´ y´y2            ´       ´
                                                                   ?
                            =   ż1        arcsin      x     y2  ˇx= y´y2      dy     =   2  ż1   arcsin      ?y   y  dy  ;
                                                  a1 ´          ˇ?                                         ?
                                  0                             ˇx=´ y´y2                     0
                                                                                                             1+
   120   121   122   123   124   125   126   127   128   129   130