Page 122 - Vector Analysis
P. 122

118 CHAPTER 4. Vector Calculus

and

     ˇm     n  c(        i ´ 1 L, b +     j ´1M)L W           ż                    ?g     ˇ       ε  if n, m ě N .
                  ga                                        ´                          dAˇ
      ÿ    ÿ

     ˇ                +                                                                        ă

     ˇ                      n             m             nm     [a,a+L]ˆ[b,b+W ]          ˇ2

      j=1 i=1

Then  for  n,  m  ě  N,  with  (h,    k)  denoting      (L,    W  )  (4.11)  implies    that
                                                               m
                                                          n

      ˇż                                                                                       ?g    dA  ˇ
      ˇ the surface area of ψ([a, a + L] ˆ [b, b + W ]) ´                                                ˇ

      ˇˇ

                                                                             [a,a+L]ˆ[b,b+W ]

              ˇm n
           = ˇ ÿ ÿ the surface area of ψ([a + (i ´ 1)h, a + ih] ˆ [b + (j ´ 1)k, b + jk])

              ˇ

                 j=1 i=1

                    ż                     ?g  dA     ˇ
                  ´                                  ˇ

                                                     ˇ

                      [a,a+L]ˆ[b,b+W ]

               ˇ  m     n   b(                                     )      ż                    ?g      ˇ
               ˇ               ga                              1)k hk                                  ˇ
                  ÿ    ÿ                                                                           dA

           ď   ˇ                   +  (i  ´  1)h, b  +  (j  ´          ´                               ˇ

                  j=1 i=1                                                    [a,a+L]ˆ[b,b+W ]

                      mn                                                        ˇ
                  ˇÿÿ

               + ˇ f (a + (i ´ 1)h, b + (j ´ 1)k; h, k)hk ˇ
                  ˇˇ

                     j=1 i=1

           ăε+           ε      mn

                  2 2LW        ÿÿ
                                       hk = ε .

                               j=1 i=1

The discussion above verifies the following

Theorem 4.47. Let Σ Ď R3 be a regular C 1-surface, tV, ψu be a local C 1-parametrization
of Σ at p, and g be the first fundamental form associated with tV, ψu. Then

                                                                      ż         ?g dA .
                                   the surface area of ψ(V) =

                                                                             V

Example 4.48. Recall from Example 4.46 that the first fundamental form g of the parametriza-

tion tV, ψu of the 2-sphere centered at the origin with radius R, where

                               ψ(θ, ϕ) = (R cos θ sin ϕ, R sin θ sin ϕ, R cos ϕ)

and V = (0, 2π) ˆ (0, π), is given by g(θ, ϕ) = R4 sin2 ϕ. Therefore,

                                         ( )ż                                           R2 sin ϕ d(θ, ϕ)
               the surface area of ψ (0, 2π) ˆ (0, π) =

                                                                          (0,2π)ˆ(0,π)

                               ż 2π ż π

                       = R2               sin ϕ dϕdθ = 4πR2 .

                                               00

                                                      ()
Since the difference of the 2-sphere and ψ (0, 2π) ˆ (0, π) has zero area, we find that the

surface area of the 2-sphere with radius R is 4πR2.
   117   118   119   120   121   122   123   124   125   126   127