Page 119 - Vector Analysis
P. 119

§4.3 The Surface Integrals                                                                                                  115

Proof. Using the permutation symbol and Kronecker’s delta, we have

}ψ,1 ˆψ,2 }R2 3 =               3    (    3  εijkψj,1 ψk,2 )(                  3   εirs ψ r ,1  ψs,2      )

                               ÿ         ÿ                                    ÿ

                               i=1 j,k=1                                     r,s=1

                                      3    [(   3         εirs)ψj             ψ k ,2  ψ r ,1  ψs,2     ]

                            =        ÿ         ÿ    εijk                  ,1

                               j,k,r,s=1 i=1

                            =         3    (                  δjs δkr )ψj ,1      ψ k ,2  ψ r ,1  ψs,2       ,
                                            δj r δks
                                     ÿ

                                                      ´

                               j,k,r,s=1

where we use the identity                                                                                                   (4.9)

                                                                 3

                                          ÿεijkεirs = δjrδks ´ δjsδkr

                                                               i=1

to conclude the last equality. Therefore,

}ψ,1 ˆψ,2 }R2 3 =               3    (ψj ,1  ψ k ,2   ψj ,1     ψ k ,2    ´ψj ,1    ψ k ,2    ψj ,2  ψ k ,1     )

                               ÿ

                            j,k=1

                            = g11g22 ´ g12g21 = det(g) = g .

Finally, (4.8) is concluded from the fact that g is positive definite.                                                      ˝

Remark 4.45. Let L P B(R2; TpΣ) be given by

                            L(ae1 + be2) = aψ,1 +bψ,2 ,

where B2 = te1, e2u is the standard basis of R2. Let B1 = te1, e2u be an orthonormal basis

of TpΣ, and B3 = te1, e2, e3u be the standard basis of R3. Then

                    [                            ][             [e1]TB3      ]  [             ...[ψ,2       ]
                                                   =            [e2]BT3          [ψ,1
[L]B2,B1 =                  ψ,1 ¨e1  ψ,2 ¨e1                                           ]B3             ]B3      .
                            ψ,1 ¨e2  ψ,2 ¨e2

By the fact that te1, e2u is an orthonormal basis,

                       [    [ψ,1 ]BT3   ]  [          ...[e2        ]  [     [e1]BT3 ]    [          ]B3 ...[ψ           ]
                    =       [ψ,2 ]BT3   ]   [e1                                            [ψ,1
[L]TB2,B1 [L]B2,B1                               ]B3          ]B3         [e,2 ]TB3                  ]          ,2  ]B3
                       [    [ψ,1 ]BT3                                                      g12         ,
                    =       [ψ,2 ]TB3      [             ...[ψ            ]     [   g11    g22
                                            [ψ                                      g21
                                                ,1  ]B3         ,2  ]B3      =

where [gαβ]2ˆ2 is the metric tensor associated with the parametrization tV, ψu. Therefore,
det([L]B2,B1) = ?g as long as B1 is an orthonormal basis of TpΣ.
   114   115   116   117   118   119   120   121   122   123   124