Page 126 - Vector Analysis
P. 126

122 CHAPTER 4. Vector Calculus

thus making a change of variable y = tan2 θ we conclude that

          the  surface  area   of  Σ   =  2  żπ      arcsin    tan θ    d(tan2    θ)   =   2  żπ      θ   (  tan2  θ)
                                                  4            sec θ                               4     d
                                               0                                                0
                                           [                                             ]
                                          2θ                ˇθ=  π      ż  π         θdθ
                                                           θˇ    4         4
                                                   tan2                        tan2
                                       =                    ˇθ=0    ´

                                           [π                            0         ]      [π                                 ]
                                          2                                     dθ       2
                                                        ż  π                                                         ˇθ=  π
                                                           4                                                       θ)ˇ    4
                                                              (sec2                                   (tan
                                       =        4    ´               θ  ´   1)        =       4   ´          θ  ´      ˇθ=0
                                                π
                                             [          (0       π )]

                                       = 2 ´ 1´ = π´2.
                                                44

4.3.3 The surface element and the surface integral

Let Σ Ď R3 be a regular surface, and tV, ψu be a parametrization of Σ such that ψ(V) = Σ.

If f : Σ Ñ R is a bounded continuous function, the surface integral of f over Σ, denoted by

ż

   f dS, is defined by

Σ                                         ż                 ż
                                                         =
                                                f dS             (f ˝ ψ)?g dA .                                                 (4.12)

                                          ΣV

                                                  żż

In particular, if f ” 1, the number dS ” 1 dS is the surface area of Σ.

                                                                       ΣΣ

    Since the surface integrals defined by (4.12) seems to depend on a given parametrization,

before proceeding we show that the surface integral is indeed independent of the choice of the

parameterizations. Suppose that tV1, ψ1u and tV2, ψ2u are two local C 1-parameterizations
of a regular surface Σ at p, g1, g2 denote the metric tensors associated with the parameter-
izations tV1, ψ1u, tV2, ψ2u, respectively, and g1 = det(g1), g2 = det(g2) are corresponding
first fundamental forms. Let Ψ = ψ2´1 ˝ ψ1. Then the change of variables formula (Theorem
3.31) implies that

   ż  (f ˝ ψ2)?g2 dA = ż                           Ψ)(?g2             )                 ż             ψ1)(?g2            )
                                                                    Ψ |JΨ|                                             Ψ |JΨ|
                                   (f  ˝  ψ2    ˝                ˝             dA    =        (f  ˝                ˝            dA  ,

   V2 V1                                                                                  V1

where JΨ is the Jacobian of the map Ψ. Using (4.7), we find that

                     [DΨ]T[(Dψ2)          ˝   Ψ]T[(Dψ2)           ˝    ][ ]        =    [     ]T[Dψ1]        ;
                                                                     Ψ DΨ                Dψ1

thus  by  the  fact  that  g1  =   det  (            ]T[Dψ1])       and    g2  =  det   ([Dψ2]T[Dψ2          )     we  obtain   that
                                         [Dψ1                                                                ],

                                          det ([DΨ])2(g2 ˝ Ψ) = g1 .
   121   122   123   124   125   126   127   128   129   130   131