Page 98 - Vector Analysis
P. 98

94 CHAPTER 3. Multiple Integrals

Example 3.37 (Cylindrical coordinates). In R3, when the domain over which the integral
is taken is a cylinder C; that is, C = D ˆ [a, b] for some disk D and ´8 ă a ă b ă R, then
the change of variables

        ψ(r, θ, z) = (x0 + r cos θ, y0 + r sin θ, z) 0 ă r ă R , 0 ă θ ă 2π , a ď z ď b ,

where (x0, y0) is the center of D and R is the radisu of D, is sometimes very useful for
evaluating the integral. Since the Jacobian of ψ is

                                            ˇ  B   ψ1  B ψ1     B    ψ1  ˇ
                                            ˇ                            ˇ

                                            ˇ   Br     Bθ            Bz  ˇ     ˇˇcos θ ´r sin θ 0ˇˇ
                                            ˇ                            ˇ

                         Jψ (r,  θ,  z)  =  ˇ  B ψ2    B ψ2     B ψ2     ˇ  =  ˇ     θ  r cos θ      ˇ
                                            ˇ  Br      Bθ                ˇ     ˇsin                 0ˇ = r ,
                                            ˇ                                                        ˇ
                                            ˇ                        Bz  ˇ     ˇ
                                                                         ˇ     ˇ                     ˇ

                                            ˇ  B   ψ3  B ψ3     B    ψ3  ˇ     ˇ0          0 1ˇ
                                            ˇ                            ˇ

                                            ˇ Br Bθ Bz ˇ

we must have

żż

            f (x, y, z) d(x, y, z) =                                        f (x, y, z) d(x, y, z)

        C ψ((0,R)ˆ(0,2π)ˆ[a,b])

                                            ż
                                         = (f ˝ ψ)(r, θ, z)ˇˇJψ(r, θ, z)ˇˇ d(r, θ, z)

                                                (0,R)ˆ(0,2π)ˆ[a,b]

                                            ż

                                         = f (x0 + r cos θ, y0 + r sin θ, z) r d(r, θ, z) .

                                                (0,R)ˆ(0,2π)ˆ[a,b]

Example 3.38 (Spherical coordinates). In R3, when the domain over which the integral is
taken is a ball B, the change of variables

ψ(ρ, θ, ϕ) = (x0 + ρ cos θ sin ϕ, y0 + ρ sin θ sin ϕ, z0 + ρ cos ϕ) 0 ă ρ ă R, 0 ă θ ă 2π, 0 ă ϕ ă π,

where (x0, y0, z0) is the center of B and R is the radius of B, is often used to evaluate the
integral a function over B. Since the Jacobian of ψ is

                   ˇ  B  ψ1  B ψ1        B  ψ1  ˇ
                   ˇ                            ˇ

                   ˇ  B  ρ   Bθ          Bϕ     ˇ      ˇcos  θ  sin  ϕ   ´ρ sin θ sin ϕ    ρ cos θ cos ϕˇˇ
                   ˇ                            ˇ      ˇ

Jψ (ρ,  θ,  ϕ)  =  ˇ  B ψ2   B ψ2        B  ψ2  ˇ  =   ˇ     θ  sin  ϕ      ρ cos θ sin ϕ                ˇ
                   ˇ  Bρ     Bθ                 ˇ      ˇsin                                ρ sin θ cos ϕˇ
                   ˇ                            ˇ
                   ˇ                     Bϕ ˇ ˇ                                                          ˇ

                                                       ˇˇ
                                                       ˇ cos ϕ                    0 ´ρ sin ϕ ˇ
                   ˇˇ
                   ˇ B ψ3 B ψ3 B ψ3 ˇ
                   ˇˇ

                   ˇ Bρ Bθ Bϕ ˇ

                = ´ρ2 cos2 θ sin3 ϕ ´ ρ2 sin2 θ sin ϕ cos2 ϕ ´ ρ2 cos2 θ sin ϕ cos2 ϕ ´ ρ2 sin2 θ sin3 ϕ

                = ´ρ2 sin3 ϕ ´ ρ2 sin ϕ cos2 ϕ = ´ρ2 sin ϕ ,
   93   94   95   96   97   98   99   100   101   102   103