Page 97 - Vector Analysis
P. 97

§3.5 The Change of Variables Formula                                                                           93

Moreover, the curve xy ´ x + y = 0 corresponds to u = 0, while the lines x ´ y = 1 and
y = 0 correspond to v = 1 and u + v = 0, respectively; thus if E is the region enclosed by
u = 0, v = 1 and u + v = 0, then A = g(E).

                                       vy

                             Eg                                                    A
                                       u                                                            x

                             Figure 3.3: The image of E under g

Therefore,

      żż                                                              ż

            f (x, y)d(x, y) = f (x, y) d(x, y) = (f ˝ g)(u, v)|Jg(u, v)| d(u, v)

            A g(E)                                                        E

                                     ż   1ż    0                                1  ż  1

                             =                    (u  +  v)2e´v2   dudv      =  30     v3e´v2    dv

                                         0 ´v

                             =       1   ż1    we´w   dw     =    1                 ˇw=1      =    1(2  ´   )
                                     6                          ´ 6 (w    + 1)e´wˇ               ´6 e      1.
                                           0
                                                                                    ˇw=0

Example 3.36 (Polar coordinates). In R2, when the domain over which the integral is taken

is a disk D, a particular type of change of variables is sometimes very useful for the purpose

of evaluating the integral. Let (x, y) = (x0 + r cos θ, y0 + r sin θ) ” ψ(r, θ), where (x0, y0) is
the center of D under consideration. If the radius of D is R, then D, up to removing a line

segment with length R, is the image of (0, R) ˆ (0, 2π) under ψ. Note that the Jacobian of

ψ is

                                            ˇ  B  ψ1  B ψ1   ˇ     ˇˇcos  θ  ´r sin θˇˇ
                                            ˇ         Bθ     ˇ     ˇ                  ˇ = r.
                                                             ˇ
                             Jψ (r,  θ)  =  ˇ  Br            ˇ  =
                                            ˇ

                                            ˇ  B  ψ2  B  ψ2  ˇ     ˇˇsin θ      r  cos  θ  ˇ
                                            ˇ                ˇ                             ˇ

                                            ˇ Br Bθ ˇ

Therefore, if f : D Ñ R is Riemann integrable, then

żż                                                                        ż

      f (x, y) d(x, y) =                          f (x, y) d(x, y) =                       (f ˝ ψ)(r, θ)ˇˇJψ(r, θ)ˇˇ d(r, θ)

D ψ((0,R)ˆ(0,2π)) (0,R)ˆ(0,2π)

                          ż

            = f (x0 + r cos θ, y0 + r sin θ) r d(r, θ) .

                          (0,R)ˆ(0,2π)
   92   93   94   95   96   97   98   99   100   101   102