Page 94 - Vector Analysis
P. 94
90 CHAPTER 3. Multiple Integrals
[D(g ˝ ψ)]
and M = . By the property of determinants and the chain rule, we find that
[Dψ2]
[Dψ3]
...
[Dψn]
n ( Bg ˝ ) B ψj n ( Bg ˝ ) B ψj ¨¨¨ n ( Bg ˝ ) B ψj
det ( ψ ψ B x2 ψ B xn )
ř ř ¨¨¨ ř
...
j=1 B yj B x1 j=1 B yj j=1 B yj
B ψ2 B ψ2 B ψ2
det(M) = B x1 B x2 B xn
... ... ...
B ψn B ψn ¨¨¨ B ψn
B x1 B x2 B xn
( Bg ˝ ) B ψ1 ( Bg ˝ ) B ψ1 ¨¨¨ ( B g ˝ ψ) B ψ1
det ( ψ ψ )
B y1 B x1 B y1 B x2 B y1 B xn
B ψ2 B ψ2 ¨ ¨ ¨ B ψ2
= B x1 B x2 B xn
... ... . . . ...
B ψn B ψn ¨¨¨ B ψn
B ψ1 B xn
B x1 B ψ1 B x2
( B x1 B ψ1 ¨¨¨ B xn ) = (f ˝ ψ)J .
B x2
= ( Bg ) ... ... . . . ...
˝ ψ det
B y1 B ψn B ψn
B ψn ¨ ¨ ¨
B x1 B x2 B xn
On the other hand, letting A = (Dψ)´1, then
Adj(M)j1 = (´1)1+j det () = Adj([Dψ])j1 = JAj1 .
M(p1, pj)
Computing the determinant by expanding along the first row, we obtain that
det(M) = n M1j Adj(M)j1 = n B (g ˝ ψ) JAj1 ;
B xj
ÿ ÿ
j=1 j=1
thus we conclude the identity
(f ˝ ψ)J = n B (g ˝ψ ) JA1j .
B xj
ÿ
j=1