Page 94 - Vector Analysis
P. 94

90 CHAPTER 3. Multiple Integrals


                [D(g ˝ ψ)]
and M =              . By the property of determinants and the chain rule, we find that
                [Dψ2]
                [Dψ3]

                   ...

                [Dψn]

                                    n   (  Bg    ˝    )    B  ψj     n  (  Bg     ˝    )   B  ψj     ¨¨¨    n       (  Bg     ˝    )       B  ψj  
                   det (                    ψ                                ψ     B  x2                                 ψ         B  xn   )
                                    ř                                ř                                ¨¨¨   ř
                                                                                                      ...
                                    j=1 B yj                B x1     j=1 B yj                               j=1 B yj

                                               B ψ2                            B ψ2                                     B ψ2

det(M)          =                              B x1                            B x2                                     B xn

                                                ...                             ...                                      ...

                                              B ψn                             B ψn                   ¨¨¨               B ψn
                                              B x1                             B x2                                     B xn

                                   ( Bg       ˝    )    B  ψ1     ( Bg  ˝    )  B  ψ1      ¨¨¨       ( B g ˝ ψ) B ψ1          
                   det (                 ψ                         ψ                                                   )
                                        B y1 B x1                  B y1 B x2                          B y1 B xn

                                            B ψ2                         B ψ2 ¨ ¨ ¨ B ψ2

                =                           B x1                         B x2 B xn

                                             ...                          ... . . . ...

                                            B ψn                         B ψn             ¨¨¨               B ψn
                                                                                      B ψ1                 B xn
                                            B x1 B ψ1                   B x2

                                               (    B x1      B ψ1     ¨¨¨       B xn      ) = (f ˝ ψ)J .
                                                                   B x2
                = ( Bg                )                    ...       ... . . .          ...
                            ˝       ψ    det
                     B y1                                B ψn                         B ψn
                                                                   B ψn ¨ ¨ ¨
                                                         B x1 B x2                    B xn

On the other hand, letting A = (Dψ)´1, then

                   Adj(M)j1                 =  (´1)1+j          det  ()               =  Adj([Dψ])j1        =        JAj1   .
                                                                      M(p1, pj)

Computing the determinant by expanding along the first row, we obtain that

                                    det(M)        =       n   M1j Adj(M)j1         =   n       B  (g  ˝ ψ)  JAj1  ;
                                                                                                   B  xj
                                                         ÿ                            ÿ

                                                         j=1                          j=1

thus we conclude the identity

                                                  (f     ˝    ψ)J  =   n    B  (g  ˝ψ    )  JA1j   .
                                                                                B  xj
                                                                      ÿ

                                                                      j=1
   89   90   91   92   93   94   95   96   97   98   99