Page 91 - Vector Analysis
P. 91

§3.4 The Fubini theorem                                                                                                                    87

Example      3.28.  Let    A  =   ␣(x, y)      P  R2   ˇ  0  ď  x   ď     ?           ď  y  ď  1(,    and  f     :  A  Ñ   R  be    given  by
                                                       ˇ                1, x

f (x, y) = ey3. Then Corollary 3.26 implies that

                                      ż                         ż 1 (ż 1                    )

                                           f (x, y) dA =                     ?     ey3dy dx .

                                         A 0x

Since we do not know how to compute the inner integral, we look for another way of finding

the  integral.  Observing     that      A   =  ␣(x, y)       P  R2  ˇ  0  ď     y  ď  1, 0     ď   x  ď    y2(,  we    have
                                                                    ˇ

             ż                       ż  1  (ż  y2        )                ż  1                     1       ˇy=1     e  ´   1
                                                   ey3dx dy                                                ˇ
                f (x, y) dA    =                                    =           y2ey3 dy       =      ey3        =            .
                                                                                                   3 ˇy=0              3
                A 00                                                        0

Example      3.29.  Let    A  Ď   R3       be  the   set     ␣(x1, x2, x3)         P  R3    ˇ  x1  ě  0, x2      ě  0, x3  ě     0, and  x1  +
                                                                                            ˇ

x2 + x3 ď 1(, and f : A Ñ R be given by f (x1, x2, x3) = (x1 + x2 + x3)2. Let S =

[0, 1] ˆ [0, 1] ˆ [0, 1], and f : R3 Ñ R be the extension of f by zero outside A. Then

Theorem 3.23 implies that f is Riemann integrable. Write xp1 = (x2, x3), xp2 = (x1, x3) and
xp3 = (x1, x2). Theorem 3.20 implies that

                                               żż

                                                  f (x)dx = f (x)dx ,

                                                 AS

and Theorem 3.25 implies that

                           ż ż (ż                                                                  )

                               f (x)dx =                                       f (xp3, x3)dxp3 dx3 .

                              S [0,1] [0,1]ˆ[0,1]

Let  Ax3  =  ␣(x1, x2)  P  R2  ˇ  x1    ě   0, x2  ě   0, x1 + x2         ď     1 ´ x3(.       Then        for  each   x3  P  [0, 1],
                               ˇ

     ż                                  ż                                 ż 1´x3 ( ż 1´x3´x2                                     )

                f (xp3, x3)dxp3 = f (xp3, x3)dxp3 =                                                    f (x1, x2, x3)dx1 dx2 .

     [0,1]ˆ[0,1] Ax3 0 0

Computing the iterated integral, we find that

          ż ż 1 [ ż 1´x3 ( ż 1´x3´x2                                                               )]
                                                                (x1 + x2 + x3)2dx1 dx2 dx3
                f (x)dx =

             A                00                    0                                              ]
                                  [ ż 1´x3                                                     dx2 dx3
                        =  ż1                  (x1     +  x2    +  x3)3   ˇx1=1´x3´x2
                                       0                   3              ˇ
                             0
                                                                          ˇx1=0

                           ż1     [  ż 1´x3    (1         (x2   +   x3  )3   )        ]
                                                 3               3            dx2      dx3
                        =    0         0             ´

                        =  ż1     (1     ´  x3    +    x43  )       =   1    ´     1  +  1     =   15  ´ 10      +  1  =   1     .
                                    4       3          12    dx3        4          6     60              60                10
                             0
   86   87   88   89   90   91   92   93   94   95   96