Page 88 - Vector Analysis
P. 88

84 CHAPTER 3. Multiple Integrals

                                      ż

f (x, ¨) : B Ñ R is denoted by f (x, y) dy, and the upper integral of f (x, ¨) : B Ñ R is

                                                    B

             ż

denoted by f (x, y) dy. If for each x P A the upper integral and the lower integral of

             Bż

f (x, ¨) : B Ñ R are the same, we simply write f (x, y) dy for the integrals of f (x, ¨) over

                                                                          B

                   żż                                                        ż

B. The integrals f (x, y) dx, f (x, y) dx and f (x, y) dx are defined in a similar way.

                       AA                                                      A

Theorem 3.25 (Fubini’s Theorem). Let A Ď Rn and B Ď Rm be bounded sets, and f :

A ˆ B Ñ R be bounded. For x P Rn and y P Rm, write z = (x, y). Then

       ż                 ż (ż                             ) ż (ż                                 )ż

             f (z) dz ď           f (x, y)dy dx ď                                 f (x, y)dy dx ď                 f (z) dz  (3.3)

        AˆB                AB                                       AB                                     AˆB

and

     ż                   ż (ż                             ) ż (ż                                 )ż

             f (z) dz ď           f (x, y)dx dy ď                                 f (x, y)dx dy ď               f (z) dz .  (3.4)

       AˆB               BA                                         BA                                     AˆB

In particular, if f : A ˆ B Ñ R is Riemann integrable, then

                ż                    ż (ż                                 ) ż (ż                           )

                         f (z) dz =                       f (x, y)dy dx =                        f (x, y)dy dx

                AˆB                   AB                                             AB

                                     ż (ż                                 ) ż (ż                           )

                                  = f (x, y)dx dy = f (x, y)dx dy .

                                      BA                                             BA

Proof. It suffices to prove (3.3). Let ε ą 0 be given. Choose a partition P of A ˆ B such

                ż

that L(f, P) ą           f (z) dz ´ ε. Since P is a partition of A ˆ B, there exist partition Px

                   AˆB

of  A  and  partition  Py  of  B  such   that             P  =   ␣∆       =    R  ˆ  S  ˇ  R  P  Px, S  P  Py (.   By  Proposition
                                                                                        ˇ

3.14 and Corollary 3.16, we find that

     ż (ż                )ż                                  (ż                                  )

             f (x, y) dy dx =                             1A(x)                   f (x, y)1B(y) dy dx

       AB                         ż (Ť                 R            Ť     PPy  S
                                     RPPx
                                                                       S                   )

                                                                 ż

                                   ÿ                      ÿ f AˆB(x, y) dy dx
                               ě

                                  R PPx R S PPy S
                                                          ż (ż                             )
                                   ÿÿ                               f AˆB(x, y) dy dx
                               ě

                                  R PPx S PPy R S

                                      ÿ                      inf f AˆB(x, y)νm(S)νn(R)
                               ě
                                  R PPx,S PPy (x,y)PRˆS

                                                                                                           ż

                                  ÿ      inf f AˆB(x, y)νn+m(∆) = L(f, P) ą                                        f (z)dz ´ ε .
                               =

                                  ∆PP (x,y)P∆                                                                 AˆB
   83   84   85   86   87   88   89   90   91   92   93