Page 83 - Vector Analysis
P. 83

§3.2 Properties Of The Integrals                                                              79

     Since ε ą 0 is given arbitrarily, we conclude that

                                żżż
                                    f (x) dx + g(x) dx ď (f + g)(x) dx .

                                                  AAA

                                ż żż

     Similarly, we have (f + g)(x) dx ď f (x) dx + g(x) dx; thus (b) is established.

                                              A AA

(c) It suffices to show the case c = ´1. Let ε ą 0 be given. Then there exist partitions
     P1 and P2 of A such that

               żż
                   ´f (x) dx ´ ε ă L(´f, P1) and U (f, P2) ă f (x) dx + ε .

                         AA

     Let P be the common refinement of P1 and P2. Then

                       żż
                           ´f (x) dx ´ ε ă L(´f, P1) ď L(´f, P) ď ´f (x) dx

                                     AA

     and
                           żż
                               f (x) dx ď U (f, P) ď U (f, P2) ă f (x) dx + ε .

                                           AA

     By the fact that

L(´f, P) =          ÿ  inf                    A           ÿ    sup f A(x)ν(∆) =  ´U (f, P) ,

                    ∆PP xP∆       (´f ) (x)ν(∆) =    ´

                                                          ∆PP xP∆

we find that

                   żż
                      ´f (x) dx ´ ε ă L(´f, P) = ´U (f, P) ď ´ f (x) dx

                              AA

and
                  żż
                      ´f (x) dx ě L(´f, P) = ´U (f, P) ą ´ f (x) dx ´ ε .

                             AA

Therefore,
                     ż żż

                         ´f (x) dx ´ ε ă ´ f (x) dx ă ´f (x) dx + ε .

                                   A AA

Since ε ą 0 is given arbitrarily, we conclude (c).

(e) Since f is bounded on A, there exist M ą 0 such that ´M ď f (x) ď M for all x P A.

Therefore,  ´1A  ď  f  ď 1A       on  A;  thus  (c)  and  (d)  imply   that
                    M

                 ż                    ż              ě  ż    f (x)     =  1  ż
                                                                   dx     M
            0 = 1A(x) dx =               1A(x) dx         A                     f (x) dx
                                                              M
                      A                 A                                      A
   78   79   80   81   82   83   84   85   86   87   88