Page 82 - Vector Analysis
P. 82

78 CHAPTER 3. Multiple Integrals

On the other hand, let PrA be a partition of A such that PB Ď PrA and
                                        ÿε
                                                     ν(∆) ď 2(M + 1) ,

                                                 ∆PPrAzPB , ∆XB‰H

where M ą 0 is an upper bound of |f |. Then

        ÿ inf f B(x)ν(∆) ě ´M ÿ ν(∆) ě ´ ε

                     xP∆ 2

   ∆PPrAzPB , ∆XB‰H                                  ∆PPrAzPB , ∆XB‰H

which further implies that

ż

   (f 1B)(x) dx ě L(f 1B, PrA) = ÿ inf f 1BA(x)ν(∆)
                                             xP∆
A
        ( ∆PPrA
                  ÿÿ                                              ÿ        )  inf f B(x)ν(∆)

        =+                                        +                                   xP∆
                                                     ∆PPrAzPB , ∆XB=H
                  ∆PPB         ∆PPrAzPB , ∆XB‰H

                                                                              ż

        = L(f, PB) + ÿ inf f B(x)ν(∆) ą f (x) dx ´ ε .
                                                             xP∆
                               ∆PPrAzPB , ∆XB‰H                               B

Therefore, we establish that

        żżż

           f (x) dx ´ ε ă (f 1B)(x) dx ă f (x) dx + ε .

          BAB

                                                                    żż

Since ε ą 0 is given arbitrarily, we conclude that (f 1B)(x) dx = f (x) dx. Similar

                                                                                               AB

                                                             żż

argument can be applied to conclude that (f 1B)(x) dx = f (x) dx.

                                                                                     AB

(b) Let ε ą 0 be given. By the definition of the lower integral, there exist partitions P1
     and P2 of A such that

   ż    f (x) dx  ´  ε      ă  L(f, P1)  and      ż                  ε  ă  L(g, P2) .
                     2                                               2
     A                                               g(x) dx ´

                                                    A

Let P be a common refinement of P1 and P2. Then

   żż

     f (x) dx + g(x) dx ´ ε ă L(f, P1) + L(f, P2) ď L(f, P) + L(g, P)

   AA

        = ÿ inf f (x)ν(∆) + ÿ inf g(x)ν(∆)
        ∆PP xP∆                          ∆PP xP∆

                                                                        ż

        ď ÿ inf (f + g)(x)ν(∆) = L(f + g, P) ď (f + g)(x) dx .
               xP∆
        ∆PP                                                             A
   77   78   79   80   81   82   83   84   85   86   87