Page 96 - Vector Analysis
P. 96

92 CHAPTER 3. Multiple Integrals

Let  (u, v)  =  (x, x ´ 2y).    Then  (x, y)  =    g(u, v)         =  (        u  ´  v  )   thus
                                                                       u,                ;
                                                                                  2

                                                             ˇ  1     0     ˇ        1
                                                             ˇ              ˇ

                                      Jg (u,  v)        =    ˇ1       ´  1  ˇ  =  ´  2  .
                                                             ˇ           2  ˇ
                                                                            ˇ
                                                             ˇ2

Define E as the triangle with vertices (0, 0), (4, 0), (4, 4). Then A = g(E).

                vy

                                                                g

                                   E                                                        A

                                                     u                                                   x

                                   Figure 3.2: The image of E under g

Therefore,

             żż                                                             1ż (                  )

                f (x, y) d(x, y) = f (x, y) d(x, y) = f g(u, v) d(u, v)
                                                                            2E
             A                        g(E)

                                   1ż4żu                        ?                    1 ż 4 [ 2 3 2 5 ]ˇv=u
                                   = (u ´ v) v dvdu = uv 2 ´ v 2 ˇ du
                                   40 0                                              40 3                5 ˇv=0

                                   1 ż 4 (2 2) 5                               1 2 7 ˇu=4 256
                                   = ´ u 2 du = ˆ u 2 ˇ = .
                                   40 3 5                                   15 7 ˇu=0 105

Example 3.35. Let A be the region in the first quadrant of the plane bounded by the
curves xy ´ x + y = 0 and x ´ y = 1, and f : A Ñ R be given by

                                      f (x, y) = x2y2(x + y)e´(x´y)2 .

                                                       ż

We would like to evaluate the integral f (x, y) d(x, y).

                                                                              A

    Let (u, v) = (xy ´ x + y, x ´ y). Unlike the previous two examples we do not want
to solve for (x, y) in terms of (u, v) but still assume that (x, y) = g(u, v). By the inverse

function theorem,

     Jg (u,    ˇ                =  ( B (u, v) )´1  =    ˇˇy  ´     1  x + 1ˇˇ´1         =             1         =  ´x  1     .
             v)ˇ                                        ˇ    1                                       1´                +
                                     B (x, y)                            ´1       ˇ         ´y  +        x´  1            y
               ˇ(u,v)=g´1(x,y)                          ˇ                         ˇ
   91   92   93   94   95   96   97   98   99   100   101