Page 102 - Vector Analysis
P. 102
98 CHAPTER 4. Vector Calculus
Theorem 4.10. Let C Ď Rn be a curve with C 1-parametrization γ : [a, b] Ñ Rn. Then
żb
ℓ(C) = }γ 1(t)}Rn dt .
a
Proof. Let ε ą 0 be given. Since γ : [a, b] Ñ Rn is C 1, there exists δ ą 0 such that
}γ 1(t) ´ γ 1(s)››Rn ă ε ´ a) whenever s, t P [a, b], |s ´ t| ă δ .
4?n(b
By the definition of the length of curves, there exists a partition P = ta = t0 ă t1 ă ¨ ¨ ¨ ă
tk = bu of [a, b] such that
ℓ(C ) ´ ε ă k ´ γ(ti´1)››Rn ď ℓ(C) .
4
ÿ ››γ(ti)
i=1
W.L.O.G., we can assume that }P} ă δ. For each component γj of γ, the mean value
theorem implies that for some ξi P [ti´1, ti],
γj(ti) ´ γj(ti´1) = γj1(ξi)(ti ´ ti´1) ;
thus for each i P t1, ¨ ¨ ¨ , ku and si P [ti´1, ti],
ˇˇγj (ti ) ´ γj(ti´1) ´ γj1(si)(ti ´ ti´1)ˇˇ ď ˇˇγj1(ξi) ´ γj1(si)ˇˇ|ti ´ ti´1| ă ε ´ a) |ti ´ ti´1| .
4?n(b
As a consequence, for each i P t1, ¨ ¨ ¨ , ku and si P [ti´1, ti],
ˇ ˇˇ ˇ
ˇ››γ (ti) ´ γ(ti´1)››Rn ´ ››γ 1(si)››Rn |ti ´ ti´1|ˇˇ ă ˇ››γ (ti) ´ γ(ti´1)››Rn ´ ››γ 1(si)(ti ´ ti´1 )››Rn ˇ
ˇ ˇ ˇ
››γ(ti) ti´1)››Rn [ n( ε )2 ] 1
ε ÿ ti´1| 2
γ 1(si)(ti
ď ´ γ(ti´1) ´ ´ ď 4?n(b ´ a) |ti ´
j=1
ă 4(b ´ a) |ti ´ ti´1|
which further implies that
ˇ k k ˇ ε
ˇ ti´1|ˇˇ 4
ˇ ÿ ››γ(ti γ(ti´1)››Rn ÿ ››γ 1(si)››Rn|ti
) ´ ´ ´ ă .
i=1 i=1
Therefore, for a = t0 ď s0 ď t1 ď s1 ¨ ¨ ¨ ď sk ď tk = b,
ε k ››γ 1(si)››Rn|ti ε
2 2
ÿ
ℓ(C ) ´ ă ´ ti´1| ă ℓ(C ) + .
i=1
Since }γ 1} is Riemann integrable over [a, b], we must have
żb ˝
ℓ(C) ´ ε ă L(}γ 1}Rn, P) ď ››γ 1(t)››Rndt ď U (}γ 1}Rn, P) ă ℓ(C) + ε ,
a
and the theorem is concluded because ε ą 0 is given arbitrarily.