Page 106 - Vector Analysis
P. 106

102 CHAPTER 4. Vector Calculus

Remark 4.22 (The interpretation of the line integrals). Let C be a piecewise smooth curve,
and f (x) denote the density of the curve C at position x. Suppose that f is continuous on
C and x = γ(t). Then f (x) is computed by

                                 f (x) = f (γ(t)) =      lim      m(γ([t, t + ∆t]))
                                                                                       ,
                                                         ∆tÑ0 ℓ(γ([t, t + ∆t]))

where m(¨) denotes the mass. Let ε ą 0 be given. Then by the continuity of f ˝ γ and the
definition of limit, there exists δ ą 0 such that

              ˇˇ(f      ˝ γ)(t) ´    (f   ˝  γ)(s)ˇˇ  ă    ε         if  t, s P [a, b], |t ´ s| ă δ
                                                         4ℓ(C )

and

     ˇˇf (γ(t))ℓ(γ([t,  t  +  ∆t]))  ´    m(γ([t,  t  +  ∆t]))ˇˇ  ď  ℓ(γ([t,  t  +             ε    if  |∆t| ă δ ;
                                                                                      ∆t]))

                                                                                            4ℓ(C )

thus if P = ta = t0 ă t1 ă ¨ ¨ ¨ ă tk = bu is a partition of [a, b] with }P} ă δ, the total mass

                                                                          k

of the curve m(C), given by m(C) = ř m(γ([ti´1, ti])), validates the following estimate:

                                                                        i=1

                                 ˇ            k                                 ˇ        ε
                                 ˇm(C )           f (γ(si´1))ℓ(γ([ti´1, ti]))ˇˇ          2
                                 ˇ           ÿ

                                          ´                                           ď     .

                                             i=1

As a consequence,

              kk

m(C) ´ ε ă ÿ               inf                              ÿ            sup          f (ξ)ℓ(γ([ti´1, ti])) ă m(C) + ε
                                  f (ξ)ℓ(γ([ti´1, ti])) ď
              i=1 ξPγ([ti´1,ti])
                                                                  i=1 ξPγ([ti´1,ti])

which implies that the line integral of f along C is exactly the mass of the curve.

Theorem 4.23. Let C Ď Rn be a simple curve with C 1-parametrization γ : [a, b] Ñ Rn,
and f : C Ñ R be a real-valued continuous function. Then

                                          ż żb ( )                                                                (4.1)
                                             f ds = f γ(t) }γ 1(t)}Rn dt .

                                            Ca

Proof. Let ε ą 0 be given. Since f ˝ γ and γ 1 are continuous on [a, b], |f ˝ γ| + }γ 1}Rn ď M
on [a, b] for some M ą 0, and there exists δ ą 0 such that

     ˇˇ(f  ˝  γ)(s)  ´  (f    ˝  γ)(t)ˇˇ  ă  8(M   +  ε     ´  a)    whenever         s, t P [a, b], |s ´ t| ă δ
                                                      1)(b
   101   102   103   104   105   106   107   108   109   110   111