Page 107 - Vector Analysis
P. 107

§4.1 The Line Integrals                                                                                                                        103

and                                                       ε
                                                          1)(b
         ››γ 1(s)      ´     γ 1(t)››Rn  ă       8(M   +        ´  a)     whenever           s, t P [a, b], |s ´ t| ă δ .

                                                                                          żb ( )
Moreover, since f ˝ γ and γ 1 are both continuous on [a, b], the integral f γ(t) }γ 1(t)}Rn dt

                                                                                                                                         a

exists; thus there exists a partition P = ta = t0 ă t1 ă ¨ ¨ ¨ ă tk = bu of [a, b] such that

       k(         sup        ()                                          ( ))                                                   ε              (4.2)
      ÿ                       f (γ(s))}γ 1(s)}Rn                   inf f (γ(s))}γ 1(s)}Rn |ti                                   2

                                                          ´     sP[ti´1,ti]                                      ´  ti´1|   ă         .

      i=1 sP[ti´1,ti]

By choosing of a refinement of P if necessary, we can assume that }P} ă δ. Let si, ri P

[ti´1, ti] be such that

         sup       (   (γ(t))}γ      1(t)}Rn     )  =  f  (γ(si))››γ  1(si)››Rn       and              sup f (ξ) = f (γ(ri)) .
                    f

      tP[ti´1,ti]                                                                               ξPγ([ti´1,ti])

Moreover, by Theorem 4.10 and the mean value theorem for integrals, there exists qi P
[ti´1, ti] such that

                                                       ż ti

                             ℓ(γ([ti´1, ti])) =                 ››γ 1(s)››Rn ds = ››γ 1(qi)››Rn|ti ´ ti´1| ;

                                                          ti´1

thus                                                                                            ε
                                                                                                1)(b
                   ˇ                                                       ˇ
                                                                      ti´1|ˇˇ
                   ˇℓ(γ  ([ti´1,     ti  ]))  ´  ››γ 1(si)››Rn|ti  ´           ď   8(M   +             ´   a) |ti   ´  ti´1| .
                   ˇ

Therefore, by the fact that si, ri, qi P [ti´1, ti] and |ti ´ ti´1| ă δ,

ˇ(                                               )                                                               ˇ

ˇ sup              f (γ(s))}γ 1(s)}Rn |ti ´ ti´1| ´                    sup         f (ξ)ℓ(γ([ti´1, ti]))ˇˇ
ˇ

     sP[ti´1,ti]                                                   ξPγ([ti´1,ti])

              ˇˇ

         =    ˇf   (γ(si))››γ    1(si)››Rn       ´  f (γ(ri))}γ    1 (qi )››Rn ˇˇ|ti  ´  ti´1|
              ˇ

         ď ˇˇf (γ(si)) ´ f (γ(ri)ˇˇ››γ 1(si)››Rn|ti ´ ti´1| + ˇˇf (γ(ri))ˇˇ}γ 1(si) ´ γ 1(qi)››Rn|ti ´ ti´1|
                ε

         ă 4(b ´ a) |ti ´ ti´1| ,

and summing the inequality above over i we obtain that

         k                   ()                                                k                                                ˇ        ε
                              f (γ(s))}γ 1(s)}Rn |ti                                                                                     4
      ˇÿ          sup                                                        ÿ        sup
      ˇ
                                                                ´  ti´1|  ´                         f  (ξ)ℓ(γ    ([ti´1,    ti  ]))ˇ  ă     .
      ˇ                                                                                                                            ˇ

         i=1 sP[ti´1,ti]                                                     i=1 ξPγ([ti´1,ti])

Similarly,

      ˇ   k                  (                            )                    k                                                   ˇ     ε
      ˇ                       f                            |ti                                                                  ]))ˇ     4
      ˇ  ÿ       inf             (γ  (s))}γ   1  (s)}Rn         ´  ti´1|  ´  ÿ        inf           f  (ξ  )ℓ(γ  ([ti´1  ,  ti        ă     ;
                                                                                                                                   ˇ
         i=1  sP[ti´1,ti  ]                                                  i=1  ξPγ([ti´1  ,ti])
   102   103   104   105   106   107   108   109   110   111   112