Page 108 - Vector Analysis
P. 108

104 CHAPTER 4. Vector Calculus

thus using (4.2) we find that

      żb     ˝  γ)(t)}γ  1(t)}Rn    dt    ´  ε  ă     (      ˝  γ)}γ 1}Rn,  P)   ´  ε
         (f                                         L (f                            4

        a

                         kk

                         ÿ          inf                                   ÿ                sup       f (ξ)ℓ(γ([ti´1, ti]))
                      ď                         f (ξ)ℓ(γ([ti´1, ti])) ď
                         i=1 ξPγ([ti´1,ti])
                                                                                 i=1 ξPγ([ti´1,ti])

                      ď    (        ˝  γ)}γ 1}Rn, P)      +     ε  ă  żb      ˝  γ)(t)}γ 1(t)}Rn       dt  +  ε.
                         U (f                                   4        (f

                                                                        a

Since ε ą 0 is chosen arbitrary, we conclude (4.1).                                                                              ˝

Example 4.24. Let C be the upper half part of the circle centered at the origin with radius

                                                                       ż

R ą 0 in the xy-plane. Evaluate the line integral y ds.

First, we parameterize C by                                                C

                                    γ(t) = (R cos t, R sin t) t P [0, π] .

Then

                ż żπ                                                                żπ

                     y ds = R sin t››(´R sin t, R cos t)››R2dt = R2 sin t dt = 2R2 .
                C0                                                                      0

Example 4.25. Find the mass of a wire lying along the first octant part of the curve of
intersection of the elliptic paraboloid z = 2 ´ x2 ´ 2y2 and the parabolic cylinder z = x2
between (0, 1, 0) and (1, 0, 1) if the density of the wire at position (x, y, z) is ϱ(x, y, z) = xy.

    Note that we can parameterize the curve C by

                                                   ?
                                       γ(t) = (t, 1 ´ t2, t2) t P [0, 1] .

Therefore, the mass of the curve can be computed by

ż     ϱ  ds  =  ż1    ?  ´  t2  ››(1,     ? ´t      ,  2t)››R3 dt  =  ż1    ?    ´  t2  a1      ´  t2  + t2 + 4t2(1  ´  t2)  dt
                     t1                     1´                             t1                          ?
  C               0                             t2                      0
                                                                                                          1 ´ t2

                ż  1                                   1  ż  1  ?                            π

             =       a   ´  (1 ´    2t2)2 dt        =              2 ´ u2du =       1ż 4        2 cos2 θ dθ
                    t2
                0 4 ´1                                                              4´
                1[                  ]ˇθ=                                                   π
                   θ                                                                       4

             =        +  sin(2θ  )     ˇ  π        π1
                                          4     = +.

                4           2          ˇθ=´  π         84
                                             4
   103   104   105   106   107   108   109   110   111   112   113