Page 103 - Vector Analysis
P. 103

§4.1 The Line Integrals                                                                                                              99

Example 4.11. The length of the elliptic helix C parameterized by

                                  γ(t) = (a cos t, b sin t, ct)                   t  P   [      π  ]
                                                                                          0,    2

can be computed by

                               ż  π                          ż  π
                                  2                             2
                                      }γ 1(t)}R3dt                 a        sin2         b2  cos2           c2
                  ℓ(C )     =                           =             a2          t  +                t  +       dt .

                                  00

1.  When       a ă b,  letting    k   =   c b2    ´  a2  ,  then
                                                  +  c2
                                             b2

                                                     ?                ż  π
                                                       b2                2
                                                                c2          a        k2  sin2
                                          ℓ(C )  =          +                  1  ´             t dt     .

                                                                      0

2.  When       a ą b,  letting    k   =   c a2    ´  b2  ,  then
                                                  +  c2
                                             a2

                            ?             ż  π  ?                              ?                ż  π
                              a2             2    1                              a2                2
                                      c2                 k2  cos2                           c2           a        k2   sin2
               ℓ(C )   =          +                  ´                t dt  =           +                   1  ´             t dt .

                                          00

The integral E(k, ϕ) ”      żϕ?       1 ´ k2 sin2 t dt, where 0 ă k2 ă 1, is called the elliptic integral

function  of   the              0     kind,       and    E(k)         ”    (      π  )  is   called         the  complete    el liptic
                                                                         E k,
                       second                                                     2

integral of the second kind.

Definition 4.12. Let C Ď Rn be a curve with finite length. An arc-length parametriza-
tion of C is an injective parametrization γ : [a, b] Ñ Rn such that the length of the curve
γ([a, s]) is exactly s ´ a; that is,

                                     ()
                                    ℓ γ([a, s]) = s ´ a @ s P [a, b] .

Example 4.13. Let C be the circle centered at the origin with radius R.                                                      Then the

parametrization                           (                              )
                                           R cos
                               γ(s)   =              s   , R sin      s           s P [0, 2πR] ,

                                                     RR

is an arc-length parametrization of C. To see this, we note that

 (          )  =  żs   ››γ  1(t)››R2  dt  =  żs   ››(´sin       s  ,  cos   s  )›    dt  =    żs   dt    =  s          @ s P [0, 2πR] .
ℓ γ([0,  s])                                                    R           R   ›R2
                    0                          0                                                0
   98   99   100   101   102   103   104   105   106   107   108