Page 155 - Vector Analysis
P. 155

Chapter 5
Additional Topics

5.1 Reynolds’ Transport Theorem

Let Ω1 and Ω2 be two Lipschitz domains of Rn with outward-pointing unit normal N and
                                             $
                                             ’     Ω1    Ñ       Ω2

                                             &

n, respectively, and the map ψ : B Ω1 Ñ B Ω2 be a diffeomorphism; that is, ψ is

                                             ’     y     ÞÑ x = ψ(y)
                                             %

one-to-one and onto, and has smooth inverse. Let f P C 1(Ω2) X C (Ω2), and F = f ˝ ψ

which in turns belongs to C 1(Ω1) X C (Ω1). By the divergence theorem,

                                 ż     B f (x)     dx    =  ż                   dSx     .
                                       B xi
                                   Ω2                            (f ni)(x)

                                                              B Ω2

On the other hand, by the chain rule we have that

                                 BF       B (f ˝ ψ)          n   [  B  f       ]   B ψj
                                 B yi        B yi                            ψ     B yi
                                                            ÿ

                                       =                 =  j=1 B xj      ˝                ;

thus if A = (∇ψ)´1,                                          n

                                             Bf    ˝  ψ  =  ÿ    Aji  B  F   .                                      (5.1)
                                             B xi                     B  yj
                                                            j=1

Letting J = det(∇ψ) be the Jacobian of ψ, by the change of variable y = ψ(y) and the Piola

identity,

           ż     B f (x)  dx  =  ż     B  f  ()        det(∇ψ)(y)dy             =   n   ż      B    (JAji F )  dy.
                 B xi                         ψ(y)                                            B yj
             Ω2                    Ω1  B xi                                        ÿ      Ω1

                                                                                   j=1

The divergence theorem again implies that

                                 ż     B f (x) dx      =     nż       JAji F NjdSy
                                       B xi                 ÿ
                                   Ω2
                                                            j=1 Ω1

                                                          151
   150   151   152   153   154   155   156   157   158   159   160