Page 156 - Vector Analysis
P. 156

152 CHAPTER 5. Additional Topics

which further implies that

                  ż                    dSx   =  ż       F  JAT   N   |JATN|dSy  .                     (5.2)
                       (f n)(x)                            |JAT  N|
                                                  B Ω1
                    B Ω2

Let ψ˚(dSx) denote the pull-back of the surface element dSx having the property that for
any function h defined on B Ω2 = ψ(B Ω1),

                  żż

                            h(x) dSx = (h ˝ ψ)(y)ψ˚(dSx) ;

                  ψ(B Ω1)                       B Ω1

in other words, ψ˚(dSx) = ag(y) dSy for some “Jacobian” ?g of the map ψ : B Ω1 Ñ B Ω2.
Therefore, (5.2) suggests that

ż       f ndS  =  ż         [       ˝    ]                 =  ż        ˝  ψ)  JAT   N   |JATN|dSy  .
                             (f n)     ψ (y)ψ˚(dSx)                           |JAT  N|
  B Ω2              B Ω1                                           (f

                                                                B Ω1

Since f can be chosen arbitrarily, the equality above suggests that

                            n          ˝  ψ  =  JATN       =  ATN                                     (5.3)
                                                |JATN|        |ATN|

and                                                                                                   (5.4)
                                            ψ˚(dSx) = |JATN|dSy .

We finish this section by the following

Theorem 5.1 (Reynolds’ transport theorem). Let Ω Ď Rn be a smooth domain, ψ : Ω ˆ
[0, T ] Ñ Rn be a diffeomorphism, Ω(t) = ψ(Ω, t) and f (x, t) be a function defined on Ω(t).
Then

        dż ż ż                                                        (σf )(x, t) dSx ,               (5.5)
                   f (x, t) dx =                 ft(x, t) dx +
        dt                                                       B Ω(t)
               Ω(t)                          Ω(t)

where σ is the speed of the boundary in the direction of outward pointing normal of B Ω(t);
that is, with n denoting the outward-pointing unit normal of Ω(t),

                                          σ = (ψt ˝ ψ´1) ¨ n .

Proof. By the change of variable formula,

                           żż
                                 f (x, t) dx = f (ψ(y, t), t) det(∇ψ)(y, t) dy.

                                           Ω(t) Ω
   151   152   153   154   155   156   157   158   159   160   161