Page 152 - Vector Analysis
P. 152

148 CHAPTER 4. Vector Calculus

thus

      (F ˝ r)(t) ¨ r 1(t) = ´ sin2(sin t) sin2 t cos t + sin(sin t) cos(sin t) sin t cos t
                              ´ cos2(sin t) sin2 t cos t ´ sin(sin t) cos(sin t) sin t cos t

                           = ´ sin2 t cos t .

As a consequence,

                    ¿                  ż  2π                         1         ˇt=2π
                                     ´                             ´          tˇ
                       F  ¨  dr  =            sin2  t cos t dt  =       sin3          =  0.
                                                                   3 ˇt=0
                       C0

On the other hand,

      ż ż π ż π´sin ϕ

      curlF ¨ N dS =                      (0, 0, ´2) ¨ (cos θ sin ϕ, sin θ sin ϕ, cos ϕ) sin ϕ dθdϕ

      Σ 0 sin ϕ

                                 żπ

                       = ´2 sin ϕ cos ϕ(π ´ 2 sin ϕ) dϕ

                       =  (π      0       +   4  sin3   )ˇϕ=π   =  0.
                                                       ϕˇ
                                 cos 2ϕ
                             2 3 ˇϕ=0

4.8 Green’s Theorem

In most of materials Green’s theorem is introduced prior to the divergence theorem and the
Stokes theorem; however, we treat Green’s theorem as a corollary of the divergence theorem
(Theorem 4.75), the Stokes theorem (Theorem 4.86) and Theorem 4.83.

Theorem 4.90 (Green’s theorem). Let D be a bounded domain whose boundary B D is
piecewise smooth, and M, N : D Ñ R be of class C 1. Then

                             ¿ż

                                 (M, N ) ¨ dr = (Nx ´ My) dA ,

                               BD D

where the line integral (on the left-hand side of the identity above) is taken so that the curve

is counter-clockwise oriented.

Proof 1. Let u(x, y) =  ()                             be a vector-valued function defined on the 2-
                          N (x, y), ´M (x, y)                                       ()

dimensional domain D. Suppose that B D is parameterized by r(t) = x(t), y(t) for t P [a, b],

where r 1 points in the counter-clockwise direction. Then with N denoting the outward-

pointing unit normal of B D, the divergence theorem implies that

      ¿ ¿ żż

          (M, N ) ¨ dr = u ¨ N ds = divu dA = (Nx ´ My) dA .                                         ˝

      BD                             BD D                                     D
   147   148   149   150   151   152   153   154   155   156   157