Page 150 - Vector Analysis
P. 150
146 CHAPTER 4. Vector Calculus
Proof of the Stokes theorem. Using (4.23) and then applying the divergence theorem on
surfaces with boundary (Theorem 4.83), we find that
żż ż ż
curlu ¨ N dS = divΣ(u ˆ N) dS = (u ˆ N) ¨ (T ˆ N) ds = (u ¨ T) ds
ΣΣ BΣ BΣ
in which the identity (u ˆ N) ¨ (T ˆ N) = u ¨ T is used. ˝
Example 4.88. Let Σ be the surface given in Example 4.51, and F : R3 Ñ R3 be a vector-
valued function given by F(x, y, z) = (y, ´x, 0). Then by the definition of line integral,
¿ żπ ( )
2 t dt
(sin2 t, ´ cos t sin t, 0) ¨ cos2 t ´ sin2 t, 2 sin t cos t, ´ sin
F ¨ dr =
C ´ π
2
żπ ( sin2 t cos2 t ´ sin4 t ´ 2 sin2 t cos2 )
2 t dt
=
´ π
2
(t )ˇ
π ż π 1 ´ cos 2t ´ sin 2t π π
´ dt 2 =´ .
ż2 sin2 2
=´
tdt = = ´ ˇ
´ π 2´ π 2 4 ˇ´ π 2
2 2 2
while by the fact that curlF = (0, 0, ´2), the Stokes theorem implies that
¿ż ż ż π ż π´ϕ
2
F ¨ dr = (0, 0, ´2) ¨ N dS = ´2 cos ϕ sin ϕ d(θ, ϕ) = ´2 sin ϕ cos ϕ dθdϕ
CΣ ψ´1(Σ) 0ϕ
ż π (π 1 )ˇϕ= π
2 2ϕ ˇ 2
sin 2ϕ cos cos sin
= ´ (π ´ 2ϕ) dϕ = 2ϕ ´ ϕ 2ϕ +
0 2 2 ˇϕ=0
πππ π
=´ ´ + =´ .
222 2
Example 4.89. Let C be a smooth curve parameterized by t P [0, 2π] .
()
r(t) = cos(sin t) sin t, sin(sin t) sin t, cos t ,
Then the curve C is a closed curve on S2, and divide S2 into two parts. Let Σ denote the
part with smaller area. z
xy
2. Plot C1 and C2 on the θφ-plane. The curve C divides the unit sphere into two parts, and let Σ
be the part containing the point (0, 1, 0). Identify the corresponding region of Σ on θφ-plane.
3. Find the surface area of Σ.