Page 150 - Vector Analysis
P. 150

146 CHAPTER 4. Vector Calculus

Proof of the Stokes theorem. Using (4.23) and then applying the divergence theorem on
surfaces with boundary (Theorem 4.83), we find that

żż                                                                            ż                                               ż

curlu ¨ N dS = divΣ(u ˆ N) dS = (u ˆ N) ¨ (T ˆ N) ds = (u ¨ T) ds

ΣΣ                                                                               BΣ                                              BΣ

in which the identity (u ˆ N) ¨ (T ˆ N) = u ¨ T is used.                                                                                       ˝

Example 4.88. Let Σ be the surface given in Example 4.51, and F : R3 Ñ R3 be a vector-
valued function given by F(x, y, z) = (y, ´x, 0). Then by the definition of line integral,

¿                żπ                                                              (                                                        )
                                  2                                                                                                      t dt
                                     (sin2  t,      ´  cos    t  sin  t,  0)  ¨     cos2  t  ´  sin2  t,  2  sin  t  cos    t,  ´   sin
      F ¨ dr =

   C               ´  π
                      2

                  żπ                 (     sin2  t  cos2   t  ´  sin4     t  ´   2  sin2  t  cos2   )
                          2                                                                        t dt

               =

                   ´  π
                      2
                                                                                                     (t                     )ˇ
                                π                               ż     π   1   ´  cos 2t            ´            sin     2t       π          π
                                                              ´                         dt                                       2     =´ .
                    ż2                     sin2                       2
               =´
                                                 tdt   =                                        =            ´                ˇ

                                     ´  π                        2´   π                                2             4        ˇ´    π    2
                                        2                             2                                                             2

while by the fact that curlF = (0, 0, ´2), the Stokes theorem implies that

¿ż                                                     ż                                                          ż     π  ż  π´ϕ
                                                                                                                        2
F ¨ dr = (0, 0, ´2) ¨ N dS =                                          ´2 cos ϕ sin ϕ d(θ, ϕ) = ´2                                      sin ϕ cos ϕ dθdϕ

CΣ                                                     ψ´1(Σ)                                                        0ϕ

         ż  π                                                    (π                                    1             )ˇϕ=       π
            2                                                                                                     2ϕ ˇ          2
                                           sin 2ϕ                        cos              cos                sin
   =  ´        (π  ´                 2ϕ)               dϕ   =                 2ϕ    ´  ϕ        2ϕ  +
         0 2 2 ˇϕ=0
         πππ π
   =´ ´ + =´ .
         222 2

Example 4.89. Let C be a smooth curve parameterized by                                                          t P [0, 2π] .
                              ()

                    r(t) = cos(sin t) sin t, sin(sin t) sin t, cos t ,

Then the curve C is a closed curve on S2, and divide S2 into two parts. Let Σ denote the

part with smaller area.                                                             z

                                  xy

2. Plot C1 and C2 on the θφ-plane. The curve C divides the unit sphere into two parts, and let Σ
   be the part containing the point (0, 1, 0). Identify the corresponding region of Σ on θφ-plane.

3. Find the surface area of Σ.
   145   146   147   148   149   150   151   152   153   154   155