Page 145 - Vector Analysis
P. 145
§4.6 The Divergence Theorem 141
Since
Kż (u ¨ ∇Σζm) ˝ ψm?gm dy K ż żK
(u ¨ ∇Σζm) dS = (u ¨ ∇ ÿ ζm) dS = 0 ,
ÿ = ÿ
m=1 ψm´1(UmXΣ) m=1 UmXΣ Σ m=1
we conclude that
ż Kż [ 2 nα?gmgmαβ B ψm ]
ÿ B yβ
Σ divΣu ψm)(u ÿ
dS = (ζm ˝ ˝ ψm) ¨ dy1 .
α,β=1
m=J+1 BmXty2=0u
On the other hand,
ż Kż ζmu ¨ (T ˆ N) ds
u ¨ (T ˆ N) ds = ÿ
B Σ m=J+1 B ΣXUm
K ż [ ˇ B ψm ˇ]
(T ψmˇˇ B y1
= ÿ (ζm ˝ ψm)(u ˝ ψm) ¨ ˆ N) ˝ ˇ dy1 .
ˇ
m=J +1 BmXty2=0u
Therefore, the theorem can be concluded as long as we can show that
2 nα?gm gmαβ B ψm (T N) ˇ B ψm ˇ on Bm X ty2 = 0u . (4.19)
B yβ ˇ B y1 ˇ
ÿ ˇ ˇ
= ˆ ˝ ψm
α,β=1
Let τm = 2 nα?gmgmαβ B ψm on Bm Xty2 = 0u. Since nα = ´δ2α, we find that τ m ¨ B ψm =
B yβ B y1
ř
α,β=1
0 on Bm X ty2 = 0u; thus
τ m ¨ (T ˝ ψm) = 0 on Bm X ty2 = 0u .
Moreover, noting that τm is a linear combination of tangent vectors B ψm , we must have
B yβ
τ m ¨ (N ˝ ψm) = 0 on Bm X ty2 = 0u .
As a consequence,
τ m (T ˆ N) ˝ ψm on Bm X ty2 = 0u .
B ψm ˇ
B y2
Since (T ˆ N) points away from Σ, while ˝ ψm´1ˇˇ points toward Σ, by the fact that
B
Σ
τm ¨ B ψm = 2 nα?gmgmαβ B ψm ¨ B ψm = ´?gmgm22 ă 0,
B y2 B yβ B y2
ÿ
α,β=1