Page 145 - Vector Analysis
P. 145

§4.6 The Divergence Theorem                                                                                                         141

Since

Kż                 (u ¨ ∇Σζm) ˝ ψm?gm dy               K    ż                              żK
                                                                       (u ¨ ∇Σζm) dS = (u ¨ ∇ ÿ ζm) dS = 0 ,
ÿ                                                 =    ÿ

m=1 ψm´1(UmXΣ)                                         m=1 UmXΣ                                    Σ m=1

we conclude that

       ż                     Kż                                                      [     2   nα?gmgmαβ      B ψm  ]
                             ÿ                                                                                B yβ
         Σ  divΣu                                         ψm)(u                          ÿ
                   dS  =                          (ζm  ˝            ˝  ψm)        ¨                                    dy1    .
                                                                                        α,β=1
                          m=J+1 BmXty2=0u

On the other hand,

     ż Kż                                         ζmu ¨ (T ˆ N) ds
          u ¨ (T ˆ N) ds = ÿ

     B Σ m=J+1 B ΣXUm

                                    K     ż                                                [                 ˇ  B ψm   ˇ]
                                                                                            (T            ψmˇˇ  B y1
                             =    ÿ                    (ζm   ˝   ψm)(u       ˝    ψm)   ¨       ˆ  N)  ˝               ˇ  dy1    .
                                                                                                                       ˇ
                                m=J +1      BmXty2=0u

Therefore, the theorem can be concluded as long as we can show that

             2  nα?gm gmαβ      B ψm      (T      N)          ˇ  B ψm  ˇ             on Bm X ty2 = 0u .                          (4.19)
                                B yβ                          ˇ  B y1  ˇ
            ÿ                                                 ˇ        ˇ

                                       =      ˆ        ˝  ψm

         α,β=1

Let  τm  =     2   nα?gmgmαβ       B ψm   on  Bm Xty2     =   0u.   Since       nα      =  ´δ2α,   we find    that  τ  m   ¨  B ψm  =
                                   B yβ                                                                                       B y1
             ř

            α,β=1

0 on Bm X ty2 = 0u; thus

                                τ m ¨ (T ˝ ψm) = 0 on Bm X ty2 = 0u .

Moreover,   noting     that  τm    is  a  linear  combination       of    tangent          vectors  B ψm ,    we  must        have

                                                                                                    B yβ

                             τ m ¨ (N ˝ ψm) = 0 on Bm X ty2 = 0u .

As a consequence,

                             τ m (T ˆ N) ˝ ψm on Bm X ty2 = 0u .

                                                       B ψm               ˇ
                                                       B y2
Since  (T ˆ N)     points    away  from   Σ,  while              ˝  ψm´1ˇˇ        points   toward      Σ,  by   the    fact      that
                                                                            B
                                                                               Σ

                   τm     ¨  B ψm  =      2   nα?gmgmαβ      B ψm   ¨  B ψm          =  ´?gmgm22    ă     0,
                             B y2                            B yβ      B y2
                                        ÿ

                                       α,β=1
   140   141   142   143   144   145   146   147   148   149   150