Page 140 - Vector Analysis
P. 140

136 CHAPTER 4. Vector Calculus

Therefore, making change of variable x = ϑm(y) in each Wm we find that

   ż Kż

   v ¨ N dS = ÿ                       ζm(v ¨ N) dS

   B Ω m=1 B ΩXWm

                      K nż                     (ζm ˝ ϑm)(vi ˝ ϑm)(Ni ˝ ϑm)?gm dy 1
                  = ÿÿ

                     m=1 i=1 Vmˆtyn=0u

                      K nż

                  = ÿÿ                         (ζm ˝ ϑm)(vi ˝ ϑm)Jm(Am)in dy 1

                     m=1 i=1 Vmˆtyn=0u

                  =   K nż                      B    [     ˝  ϑm)Jm(Am)ni (vi   ˝         ]  dy  .
                                               B yn   (ζm                             ϑm)
                     ÿÿ

                     m=1 i=1 Vmˆ(´εm,0)

On the other hand, for α P t1, ¨ ¨ ¨ , n ´ 1u and i P t1, ¨ ¨ ¨ , nu,

                  ż              B    [     ˝  ϑm)Jm(Am)iα(vi  ˝      ]  dy  =  0  ;
                                B yα   (ζm                        ϑm)
                    Vmˆ(´εm,0)

thus the Piola identity (2.6) implies that

   ż              =   K nż                      B    [     ˝ ϑm)Jm(Am)ji (vi              ]
                                               B yj   (ζm                          ˝ ϑm) dy
        v ¨ N dS     ÿÿ

     BΩ              m=1 i,j=1 Vmˆ(´εm,0)

                      K nż

                  =ÿÿ                          Jm(Am)ij(ζm ˝ ϑm),j (vi ˝ ϑm) dy

                     m=1 i,j=1 Vmˆ(´εm,0)

                        K nż

                     +ÿ ÿ                          (ζm ˝ ϑm)Jm(Am)ji (vi ˝ ϑm),j dy .

                      m=1 i,j=1 Vmˆ(´εm,0)

Making change of variable y = ϑm´1(x) in each Vm ˆ (´εm, 0) again, by the fact that

    n                                                  and        ż(
                                                                       div ζ0v) dx = 0 ,
   ÿ (Am)ij(vi ˝ θm),j = (divv) ˝ θm

   i,j=1                                                          W0

we conclude that

ż                ż        (                    Kż                            Kż
   v ¨ N dS =         div ζ0v) dx +                    (v ¨ ∇x)ζm dx + ÿ
                                               ÿ                                      ζmdivv dx

B Ω W0                                         m=1 Wm                    m=1 Wm

                    Kż                               Kż

                  =ÿ            (v ¨ ∇x)ζm dx + ÿ             ζmdivv dx

                  m=0 Wm                           m=0 Wm

                  ż żż

                  = (v ¨ ∇x)1 dx + divv dx = divv dx .                                              ˝

                    Ω ΩΩ

Letting v = (0, ¨ ¨ ¨ , 0, f, 0, ¨ ¨ ¨ , 0) = f ei, we obtain the following
   135   136   137   138   139   140   141   142   143   144   145