Page 135 - Vector Analysis
P. 135

§4.5 Manifolds, Charts, Atlas and Differentiable Structure                                                                  131

where gi is the first fundamental form associated with the parametrization ␣φi(Ui), φ´1(.

Remark 4.71. Let C Ď R3 be a regular C 1-curve. The line integral of a scalar function
f : C Ñ R over C is the “surface integral” of f over C defined in (4.70). In other words,
dS = ds in the case that M is a one-dimensional manifold.

4.5.1 Some useful identities

Let Σ Ď Rn be the boundary of an open set Ω (thus an oriented surface), tV, ψu be a local

parametrization of Σ, and N : Σ Ñ Rn be the normal vector on Σ which is compatible with

the parametrization ψ; that is,

                            ([          ... ψ,2   ...  ¨¨¨  ... ψ,n´1  ... N  ˝  ψ  ])  ą  0.
                        det ψ,1

Define Ψ(y 1, yn) = ψ(y 1) + yn(N ˝ ψ)(y 1). Then Ψ : V ˆ (´ε, ε) Ñ T for some tubular
neighborhood T of Σ.

                 Φ(O+)                                     Ψ                                           Ω
                                                                                              O+ B Ω
       y1 = (y1, ¨ ¨ ¨ , yn´1) P Rn´1                   ψ = φ´1
                                                                                           ψ(y1) P B Ω
                                                            φ

                                                       Φ = Ψ´1

Figure 4.3: The map Ψ constructed from the local parametrization tV, ψu

Since  (∇Ψ)ˇˇtyn=0u  =  [     ... ψ,2   ...  ¨¨¨  ... ψ,n´1  ... N ˝ ψ  ]     Corollary      1.65   and  1.66      implies  that
                         ψ,1                                             ,

det(∇Ψ)2ˇˇtyn=0u        =  [  det  ((∇Ψ)T)                        ]ˇ             =  det    ((∇Ψ)T∇Ψ)ˇˇ
                                                      det(∇Ψ) ˇ                                  ˇtyn=0u

                                                                   ˇtyn=0u

                           det (    g11            g12     ¨¨¨            g(n´1)1        0    ) = g .
                                          g21            g22     ¨¨¨            g(n´... 1)2
                        =                  ...            ...    ...                           0
                                        g(n´1)1        g(n´1)2   ¨¨¨          g(n´1)(n´1)      ...
                                                                                               0

                                             0 0 ¨¨¨ 0 1

Defining J as the Jacobian of the map Ψ; that is, J = det(∇Ψ), then the identity above

implies that                       J = ?g on tyn = 0u .
   130   131   132   133   134   135   136   137   138   139   140