Page 138 - Vector Analysis
P. 138

134 CHAPTER 4. Vector Calculus

where  D((a, r)    is  the  disk  in   R2   given  by  ␣(x1, x2)      P   R2  ˇ  (x1    ´  a1  )2  +  (x2  ´   a2)2   ď  r2(.   Since
                                                                              ˇ

B B(a, r)z ψ+(D(a, r)) Y ψ´(D(a, r)) is the equator of the sphere B B(a, r) which has zero

area, we must have

                       żż                                                        ż

                                u3N3 dS =                    u3N3 dS +                             u3N3 dS .

                       BB(a,r)                   ψ+(D(a,r))                       ψ´(D(a,r))

Note  that  (N ˝ ψ˘)(x1, x2)         =   1  (         x2  )  ´   )    In  view      of  Example          4.49,  we    have
                                         r   ψ˘(x1,             a.

ż
             u3N3 dS

  ψ+(D(a,r))

      =  ż         u3(ψ+(x1,     x2)) ar2     ´  (x1  ´   a1)2  ´  (x2   ´  a2)2                          r                     dA
                                                           r                                             a1)2
           D(a,r)                                                                   ar2    ´   (x1    ´        ´  (x2  ´  a2)2

         ż
      = u3(ψ+(x1, x2)) dA .

            D(a,r)

and similarly,               żż
Therefore,
                                            u3N3 dS = ´                   u3(ψ´(x1, x2)) dA .

                             ψ+(D(a,r))                         D(a,r)

         ż                         ż          [u3                                               ]
                     u3N3 dS =                                                             x2))
                                                   (ψ+(x1,   x2   ))  ´   u3(ψ´(x1,                 dA

            BB(a,r)                   D(a,r)  ( ż ?a3+ r2´(x1´a1)2´(x2´a2)2
                                                     ?
                                 =  ż                                                   B  u3  (x1,   x2,  x3)      )     A
                                                   a3´ r2´(x1´a1)2´(x2´a2)2             B  x3                   dx3 d
                                      D(a,r)

                                    ż         B u3 dx .
                                 =    B(a,r) B x3

Similarly,

         ż             u1N1  dS   =   ż         B u1  dx     and      ż          u2N2      dS      =  ż         B u2  dx ;
                                                B x1                                                            B x2
           BB(a,r)                      B(a,r)                          BB(a,r)                         B(a,r)

thus we conclude that                                                        3

                                      ż                       ż             ÿ    B ui
                                                u ¨ N dS =
                                                                   B(a,r) i=1 B xi      dx  .

                                       BB(a,r)

The computation above motivates the following

Definition 4.73 (The divergence operator). Let u : Ω Ď Rn Ñ Rn be a vector field. The

divergence of u is a scalar function defined by

                                                   divu =        n    Bui .

                                                                ÿ

                                                                i=1 B xi
   133   134   135   136   137   138   139   140   141   142   143