Page 137 - Vector Analysis
P. 137

§4.6 The Divergence Theorem                                                                                 133

Example 4.72. Find the flux integral of the vector field F(x, y, z) = (x, y2, z) upward
through the first octant part Σ of the cylindrical surface x2 + z2 = a2, 0 ă y ă b.

                                                 z
                                                  a

                                         ab
                                       xy

                                     Figure 4.4: The surface Σ
Fist, we parameterize Σ by

                                     ?
                  ψ(u, v) = (u, v, a2 ´ u2), (u, v) P V = (0, a) ˆ (0, b) .

Since the first fundamental form g associated with tV, ψu is g = }ψ,1 ˆψ,2 }2R3                   =           a2    ,
and the upward-pointing unit normal is N(x, y, z) = ( x , 0, z ), we have                                  a2 ´ u2

                                                                   aa

ż    F  ¨  N dS      =  ż    1 (u2  +  a2  ´  u2) ? a      u2  d(u, v)  =  a2    ż         1  u2  d(u, v)
                             a                      a2 ´                              ?
  Σ                       V                                                        V
                                                                                        a2 ´

                             żbża          1                            u ˇu=a        πa2b
                                                                         ˇ
                     = a2           ?         dudv    =    a2b arcsin            =            .
                             0 0 a2 ´ u2                                a ˇu=0        2

4.6.2 Measurements of the flux - the divergence operator

Let Ω Ď R3 be an open set, and u : Ω Ñ R3 be a C 1 vector field. Suppose that O is a
bounded open set of class C 1 such that O Ď Ω with outward-pointing unit normal vector
field N. Then the flux integral of u over B O in the direction N is

                                              ż

                                                   u ¨ N dS .

                                                BO

Consider a special case that O = B(a, r) for some ball in R3 centered at a with radius r.
                  ż

We first compute             u3N3 dS. Consider

                  BB(a,r)

ψ+(x1,  x2)  =    (     x2,  a3  +  ar2    ´  (x1  ´  a)2  ´  (x2  ´       )  ,       (x1, x2) P D(a, r) ,
                   x1,                                                a2)2            (x1, x2) P D(a, r) ,
                  (                                                        )
ψ´(x2,  x2)  =     x1,  x2,  a3  ´  ar2    ´  (x1  ´  a)2  ´  (x2  ´  a2)2    ,
   132   133   134   135   136   137   138   139   140   141   142