Page 55 - Vector Analysis
P. 55

§2.5 Properties of Differentiable Functions                                                              51

Proof. To simplify the notation, let y0 = f (x0), A = (Df )(x0) P B(Rn, Rm), and B =
(Dg)(y0) P B(Rm, Rℓ). Let ε ą 0 be given. By the differentiability of f and g at x0 and y0,
there exists δ1, δ2 ą 0 such that if }x ´ x0}Rn ă δ1 and }y ´ y0}Rm ă δ2, we have

               }f (x)  ´  f (x0)  ´  A(x  ´  x0)}Rm    ď  min ␣1,        ε   1) (}x    ´  x0}Rn  ,
                                                                   2(}B} +

                  }g(y)   ´  g(y0)  ´  B(y  ´  y0)}Rℓ  ď        ε  1) }y  ´  y0}Rm  .
                                                          2(}A} +

Define

                          u(h) = f (x0 + h) ´ f (x0) ´ Ah           @ }h}Rn ă δ1 ,
                          v(k) = g(y0 + k) ´ g(y0) ´ Bk             @ }k}Rm ă δ2 .

Then if }h}Rn ă δ1 and }k}Rm ă δ2,

}u(h)}Rm ď }h}Rn ,                                  ε              and                          ε

                             }u(h)}Rm ď 2(}B} + 1) }h}Rn                  }v(k)}Rℓ ď 2(}A} + 1) }k}Rm .

Let k = f (x0 + h) ´ f (x0) = Ah + u(h). Then lim k = 0; thus there exists δ3 ą 0 such that
                                                                                           hÑ0
                                   }k}Rm ă δ2 whenever }h}Rn ă δ3 .

Since
                                                                                   ()

         F (x0 + h) ´ F (x0) = g(y0 + k) ´ g(y0) = Bk + v(k) = B Ah + u(h) + v(k)
                                  = BAh + Bu(h) + v(k) ,

we conclude that if }h}Rn ă δ = mintδ1, δ3u,

}F (x0  +  h)  ´  F (x0)  ´  BAh}Rℓ    ď  }Bu(h)}Rℓ    +  }v(k)}Rℓ  ď   }B}}u(h)}Rm       +        ε  1) }k}Rm
                                                                                             2(}A} +
        ε ε(                                              )ε
                                                                             ε
        ď 2 }h}Rn + 2(}A} + 1) }A}}h}Rn + }u(h)}Rm ď 2 }h}Rn + 2 }h}Rn = ε}h}Rn

                                                              []                                                ˝
which implies that F is differentiable at x0 and (DF )(x0) = BA.

Example 2.50. Consider the polar coordinate x = r cos θ, y = r sin θ. Then every function
f : R2 Ñ R is associated with a function F : [0, 8) ˆ [0, 2π) Ñ R satisfying

                                       F (r, θ) = f (r cos θ, r sin θ) .
   50   51   52   53   54   55   56   57   58   59   60