Page 12 - Vector Analysis
P. 12

8 CHAPTER 1. Linear Algebra

Proof. By Hölder’s inequality, it is clear that }x}p ě sup ˇˇ(x, y)ˇˇ for all x P Fn. On the

                                                                           }y}p1 =1

other  hand,  note  that  |xk|p  =  xk ¨xk|xk|p´2;       thus     letting  yk  =     xk |xk |p´2   we  find  that  }y}p1  =  1
                                                                                      }x}pp´1
which implies that
                                                                 n
                                    ˇˇ(x, y)ˇˇ  =      1                   =   }x}p
                                                    }x}pp´1    ÿ |xk|p

                                                               k=1

which implies that sup ˇˇ(x, y)ˇˇ ě }x}p.                                                                                    ˝

                                     }y}p1 =1

Making use of Hölder’s inequality (1.1) and the Riemann sum approximation of the

Riemann integral, we can conclude the following

Theorem  1.26.      Let   1  ď p ď 8.    If     p1  is   the  conjugate    of  p;    that  is,  1  +   1   = 1,  then
                                                                                                p      p1

                    ˇż1 ˇ

                    ˇ        f  (x)g(x)  dxˇ    ď   }f   }p}g}p1       @ f, g P C ([0, 1]; R) ,
                    ˇ                       ˇ

                          0

where                                 $ (ż1                       )1

                                      ’             |f (x)|pdx p       if 1 ď p ă 8 ,
                                      ’                                if p = 8 .
                                      &

                             }f }p =            0

                                      ’         max |f (x)|
                                      ’

                                      % xP[0,1]

Remark 1.27. The Minkowski inequality implies that

                            }f + g}p ď }f }p + }g}p @ f, g P C ([0, 1]; R) .

In other words, the function } ¨ }p : C ([0, 1]; R) Ñ R is a norm on C ([0, 1]; R), and is called
the Lp-norm.

1.4 Matrices

Definition 1.28 (Matrix). Let F be a scalar field. The space M(m, n; F) is the collection

of elements, called an m-by-n matrix or m ˆ n matrix over F, of the form

                                         
                                                   a11 a12 ¨ ¨ ¨ a1n
                                    A =                                    ,
                                                   a21   a22      ¨¨¨  a2n
                                                    ...   ...     ...   ...

                                                am1 am2 ¨ ¨ ¨ amn
   7   8   9   10   11   12   13   14   15   16   17