Page 31 - Vector Analysis
P. 31
§1.7 Representation of Linear Transformations 27
mm
Assume max ÿ = ÿ for some 1ď k ď n. Let
1ďiďn |aij | |akj |
j=1 j=1
x = (sgn(ak1), sgn(ak2), ¨ ¨ ¨ , sgn(akn)) .
m
Then }x}8 = 1, and }Ax}8 = ř |akj|.
j=1
On the other hand, if }x}8 = 1, then
m ! mm m )
|anj| ;
ÿ max ÿ ÿ ÿ
|ai1x1 + ai2x2 + ¨ ¨ ¨ aimxm| ď |aij | ď |a1j |, |a2j |, ¨ ¨ ¨
j=1 j=1 j=1 j=1
! mm m )
|.
thus max ÿ ÿ ÿ In other words, is the largest
}A}8 = |a1j |, |a2j |, ¨ ¨ ¨ |anj }A}8
j=1 j=1 j=1
sum of the absolute value of row entries.
nn n
= max ! ÿ |ai1|, ÿ |ai2|, ¨ ¨ ¨ )
2. p = 1: ÿ |aim| .
}A}1 ,
i=1 i=1 i=1
Reason: Let (¨, ¨) denote the inner product in Rm. Then for x P Rn with }x}1 = 1, by
Hölder’s inequality (1.1) and Theorem 1.25 we have
}Ax}1 = sup (Ax, y) = sup (x, ATy) ď sup }x}1}ATy}8
}y}8=1 }y}8=1 }y}8=1
= sup }ATy}8 = }AT}8 ;
}y}8=1
thus }A}1 = sup }Ax}1 ď }AT}8. Similarly, if y P Rm and }y}8 = 1, then
}x}1=1
}ATy}8 = sup (x, ATy) = sup (Ax, y) ď sup }Ax}1}y}8
}x}1=1 }x}1=1 }x}1=1
= sup }Ax}1 = }A}1
}x}1=1
which implies that }AT}8 = sup }ATy}8 ď }A}1. As a consequence,
}y}8=1
! nn n )
|aim|
}AT}8 max ÿ ÿ ÿ
}A}1 = = |ai1|, |ai2|, ¨ ¨ ¨ , .
i=1 i=1 i=1