Page 24 - Vector Analysis
P. 24

20 CHAPTER 1. Linear Algebra

Definition 1.67 (Minor, Cofactor, and Adjoint matrices). Let A be an n ˆ n matrix, and
A(ˆi, ˆj) be the (n ´ 1) ˆ (n ´ 1) matrix obtained by eliminating the i-th row and j-th column

of A; that is,

                   
                               a11 a12 ¨ ¨ ¨ a1(j´1) a1(j+1) ¨ ¨ ¨ a1n

A(ˆi, ˆj)       =       ...     ...    ¨¨¨        ...          ...             ¨¨¨       ...       .
                                                 ¨¨¨
                               a(i´1)1  a(i´1)2        a(i´1)(j´1)  a(i´1)(j+1)          ¨¨¨    a(i´1)n
                               a(i+1)1  a(i+1)2                     a(i+1)(j+1)          ...    a(i+1)n
                                                       a(i+1)(j´1)
                                  ...      ...              ...          ...                       ...

                               an1 an2 ¨ ¨ ¨ an(j´1) an(j+1) ¨ ¨ ¨ ann

The (i, j)-th minor of A is the determinant of A(ˆi, ˆj), and the (i, j)-th cofactor, is the

(i, j)-th minor of A multiplied by (´1)i+j. The adjoint matrix of A, denoted by Adj(A),

is the transpose of the cofactor matrix; that is,

                                        []          =  (´1)i+j  det (A(ˆj,ˆi)) .
                                         Adj(A) ij
                                                                                                                          
                                        12 3                                                             ´3            ´3  6
                                                                                                                       ´1  2 ,
Example 1.68. Let A =  3 ´1 2 . Then the minor matrix of A is ´8

                                        0 2 ´1                                                             7 ´7 ´7
                                                                                                      
                                        ´3 3 6                                                           ´3 8 7

the cofactor matrix of A is  8 ´1 ´2, and the adjoint matrix of A is  3 ´1 7 .

                                        7 7 ´7                                                             6 ´2 ´7

The following lemma provides a way of computing the minors of a matrix.

Lemma 1.69. Let A be an n ˆ n matrix. Then

                det (A(ˆi, ˆj)) = (´1)i+j              ÿ                                 ź

                                                                             εk1k2¨¨¨kn         aℓkℓ .

                                                    (k1,¨¨¨ ,kn)PP(n), ki=j              1ďℓďn
                                                                                           ℓ‰i

Proof. Fix (i, j) P t1, 2, ¨ ¨ ¨ , nu ˆ t1, 2, ¨ ¨ ¨ , nu. The matrix A(ˆi, ˆj) is given by A(ˆi, ˆj) = [bαβ],
where α, β = 1, 2, ¨ ¨ ¨ , n ´ 1, and

                                        $ aαβ          if α ă i and β ă j,
                                        ’              if α ą i and β ă j,
                                                       if α ă i and β ą j,
                                        ’              if α ą i and β ą j.

                                        ’  a(α+1)β
                                        ’
                                        &

                               bαβ =       aα(β+1)

                                        ’
                                        ’

                                        ’

                                        ’

                                        % a(α+1)(β+1)

Each permutation (σ1, σ2, ¨ ¨ ¨ , σn´1) of degree n ´ 1 corresponds a unique permutation
(k1, k2, ¨ ¨ ¨ , kn) of degree n such that
   19   20   21   22   23   24   25   26   27   28   29