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Amoeboid motion in confined geometry
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Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to
move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex
picture emerges: (i) The swimmer’s nature (i.e., either pusher or puller) can be modified by confinement, thus
suggesting that this is not an intrinsic property of the swimmer. This swimming nature transition stems from
intricate internal degrees of freedom of membrane deformation. (ii) The swimming speed might increase with
increasing confinement before decreasing again for stronger confinements. (iii) A straight amoeoboid swimmer’s
trajectory in the channel can become unstable, and ample lateral excursions of the swimmer prevail. This happens
for both pusher- and puller-type swimmers. For weak confinement, these excursions are symmetric, while they
become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. In
this study, we combine numerical and theoretical analyses.
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Some unicellular microorganisms move on solid surfaces or
swim in liquids by deforming their body instead of using flag-
ella or cilia—this is known as amoeboid motion. Algae such
as Eutreptiella Gymnastica [1], amoeba such as dictyostelium
discoideum [2,3], but also leucocytes [2,3] and even cancer
cells [4] use this specific way of locomotion. This is a complex
movement that recently incited several theoretical studies
[5–12] since it is intimately linked to cell migration involved
in several diseases. Some experimental results indicate that
adhesion to a solid substratum is not a prerequisite for cells
such as amoeba [2] to produce an amoeboid movement during
cell migration, and suggest that crawling close to a surface
and swimming are similar processes. Recently, it was shown
that integrins (proteins involved in adhesion process) should
no longer be viewed as force transducers during locomotion
but as switchable immobilizing anchors that slow down cells
in the bloodstream before transmigration. Indeed, leukocytes
migrate by swimming in the absence of specific adhesive
interactions with the extracellular environment [13].

When moving, all microorganisms are sensitive to their
environments. Most microswimmers can follow gradients of
chemicals (chemotaxis), some microalgae can move toward
light sources (phototaxis) [14] or orient themselves in the
gravity field (gravitaxis) [15], some other bacteria move along
adhesion gradients (haptotaxis) [16,17], etc. Spatial confine-
ment is another major environmental constraint which strongly
influences the motion of microorganisms. As a matter of fact, in
the low-Reynolds number world, amoeboid motion generally
occurs close to surfaces, in small capillaries or in extracel-
lular matrices of biological tissues. Micro-organisms swim
through permeable boundaries, cell walls, or microvasculature.
Therefore, the effect of walls on motile microorganisms has
been a topic of increasingly active research [18–27]. It has
been calculated a long time ago by Katz [28] and more
recently pointed out [21,23,25,27,29] that swimmers can take
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advantage of walls to increase their motility. Understanding
the behavior of microswimmers in confinement can also pave
the way to novel applications in microfluidic devices where
properly shaped microstructures can interfere with swimming
bacteria and guide, concentrate, and arrange populations of
cells [30]. Living microswimmers show a large variety of
swimming strategies [29] as do theoretical models aiming at
describing their dynamics in confinement.

Felderhof [18] has shown that the speed of Taylor-like
swimmer increases with confinement. Zhu et al. [21] used
the squirmer model to show that (when only tangential surface
motion is included) the velocity decreases with confinement
and that a pusher crashes into the wall, a puller settles in a
straight trajectory, and a neutral swimmer navigates. When in-
cluding normal deformation, they found an increase of velocity
with confinement. Liu et al. [25] analyzed a helical flagellum
in a tube and found that, except for a small range of tube radii,
the swimming speed, when the helix rotation rate is fixed,
increases monotonically as the confinement becomes tighter.
Acemoglu et al. [24] adopted a similar model but, besides
the flagellum, they included a head and found a decrease of
velocity with confinement. Bilbao et al. [22] treated numeri-
cally a model inspired by nematode locomotion and found that
it navigates more efficiently and moves faster due to walls.
Ledesma et al. [23] reported on a dipolar swimmer in a rigid
or elastic tube and found a speed enhancement due to walls.

Here, we investigate, by means of numerical and analytical
modeling, the effect of confinement on the behavior of an
amoeboid swimmer, which is a deformable object subjected
to active forces along its inextensible membrane. Our model
swimmer is found to reveal interesting features when confined
between two walls. (i) We find that straight trajectories might
be unstable, independently of the nature of the swimmer
(pusher or puller). (ii) For weak confinement, the swimming
speed can either increase or decrease depending on the
confinement strength. For strongly confined regimes, the
velocity decreases in all cases, recalling previous results on
different models. (iii) The confined environment is shown to
induce a transition from one to another type of swimmer (i.e.,
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puller or pusher). These behaviors are unique to amoeboid
swimming (AS) and point to a nontrivial dynamics owing to
the internal degrees of freedom that evolve in response to
various constraints.

The model. Amoeboid swimming is modeled here by taking
a one-dimensional (1D) closed and inextensible membrane,
which encloses a two-dimensional (2D) liquid of certain
viscosity η and is suspended in another fluid taken to be of
the same viscosity, for simplicity. The extra computational
complexity of dealing with confined geometry restricts our
study to 2D, which draws already rich behaviors. The
effective radius of the swimmer is R0 = √

A0/π , where A0

is the enclosed area. The swimmer has an excess normalized
perimeter � = L0/(2πR0) − 1 (L0 is the perimeter) with
respect to a circular shape (� = 0 corresponds to a circle,
whereas large � signifies a very deflated, and thus amply
deformable, swimmer). The strength of confinement is defined
as C = 2R0/W , with W the channel width. Bounding walls
are parallel to the x direction and y denotes the orthogonal
one.

A set of active forces is distributed on the membrane that
reacts with tension forces to preserve the local arclength. The
total force density is given by

F = Fan − ζcn + ∂ζ

∂s
t, (1)

where Fan is the active force to be specified below (which we
take to point along the normal n for simplicity), ζ is a Lagrange
multiplier that enforces local membrane incompressibility, c

is the curvature, t is the unit tangent vector, and s is the
arclength. We impose zero total force and torque. In its full
generality the active force can be decomposed into a Fourier
series Fa(α,t) = ∑k=kmax

k=−kmax
Fk(t)eikα , with α = 2πs/L0. We

first consider the case kmax = 3, so that we are left with two
complex amplitudes F2 and F3. Other configurations of the
forces have been explored as well (see below). We consider
cyclic strokes represented by F2 = F−2 = −A cos(ωt) and
F3 = F−3 = A sin(ωt), where A is the force amplitude.

The Stokes equations with boundary conditions (force
balance condition, continuity of the fluid velocity, and mem-
brane incompressibility) are solved using either the boundary
integral method (BIM) [31] or the immersed boundary method
(IBM) [32].

Besides � and C, there is an additional dimensionless
number S = A/(ωη), which is the ratio between the time
scale associated with swimming strokes (Ts = 2π/ω) and the
time scale of fluid flow due to active force (Tc = η/A). Here,
we take S = 10.0 (the shape has enough time to respond to
active forces) and explore the effects of � and C. At a large
distance from the swimmer, the velocity field is governed
by σij = ∮

Firjds. Only the (dimensionless) stresslet 
 =
(σxx − σyy)/(η/Ts) enters the velocity field for symmetric
swimmers. 
 > 0 defines a pusher and 
 < 0 defines a puller.
The force distribution defined above is found to correspond to
a pusher in the absence of walls. Below we will see how to
monitor a puller or pusher and how the walls change the nature
of the swimmer.

Results: Axially moving swimmers. We first consider an
axially moving swimmer (AMS) (see Fig. 1). We consider
only dimensionless quantities (unless otherwise stated). For

FIG. 1. (Color online) Snapshots of an axially moving swimmer
over time (W = 6R0). The dashed profiles show a complete period
Ts of deformation, and then a few shapes are represented over a time
of the order of 75Ts . � = 0.085.

example, V̄ = V Tc/R0 will denote the magnitude of swim-
ming speed. We find an optimal confinement for swimming
velocity. Increasing C enhances the speed of the swimmer until
an optimal Co, where the speed attains a maximum before it
decreases. Around the optimal value Co, low (high) viscous
friction between the swimmer and the walls during the forward
(recovery) phase of swimming promotes AMS speed. When
the confinement is too strong, large amplitude deformations are
frustrated, resulting in a loss of speed. The velocity collapse
at strong confinement was also reported for helical flagellum
[24,25] and is expected to occur for all swimmer models.
Figure 2 shows the swimming velocity magnitude for different
� values. That the wall enhances motility seems to be a
quite general fact, as reported in the literature [18,19,21–25].
However, we must stress that this is not a systematic tendency.
Close inspection shows that at weak confinement velocity first
decreases before increasing, as shown in Ref. [33].

Results: Swimmer nature evolution. The value of the dimen-
sionless stresslet 
 depends on the instantaneous swimmer
configuration, and its sign instructs us on the nature of the
swimmer. We determine the average stresslet over a navigation
cycle. An interesting result is the effect of confinement on the
pusher/puller nature of the swimmer. For small C (<0.5) the
swimmer is found to behave as a pusher, while it behaves as a
puller for larger C (>0.5). Figure 3 shows the evolution of 〈
〉
as a function of confinement, where a transition from pusher
to puller is observed.
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FIG. 2. Time-averaged velocity magnitudes (as a function of
confinement C) of an axially moving swimmer for different � values.
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FIG. 3. Time-averaged 〈
〉 as a function of confinement C

showing the transition from pusher to puller.

Results: Instability of the central position. The central
position after a long time is found to be unstable. The swimmer
exhibits at small C (weakly confined regime) a zigzag motion
undergoing large amplitude excursions from one wall to the
other. We refer to this as a navigating swimmer (NS). Figure 4
shows a snapshot, whereas the insets of Fig. 5 display typical
trajectories. Despite this complex motion, the velocity in Fig. 5
behaves with C qualitatively as that of the central swimmer.

The NS trajectory was recently reported [21,34] in the
cases of squirmer and three-bead models and also observed
experimentally for paramecium (ciliated motility) in a tube
[19] pointing to the genericity of navigation. This instability
can be explained analytically (see Ref. [33]).

A remarkable property is that the navigation mode can
be adopted both by the pusher and the puller. This is in
contrast with nonamoeboid motion [21], where a pusher is
found to crash into the wall whereas the puller settles into a
straight trajectory. These last two behaviors are also recovered
by our simulations, provided the stresslet amplitude is large
enough (
2 � −V̄ DS, where D is the dimensionless force
quadrupole strength; see Ref. [33]).

Results: Symmetry-breaking bifurcation. At a critical C∗ the
symmetric excursion of the swimmer becomes unstable and
undergoes a bifurcation characterized by the loss of the central
symmetry in favor of an asymmetric excursion in the channel,
as shown in the trajectories of Fig. 5 (see the supplemental
movies in Ref. [33]). Figure 6 shows the average position
in y of the center of mass as a function of confinement: a

FIG. 4. (Color online) Snapshots of a navigating swimmer over
time (W = 6R0). The dashed profiles show a complete period Ts of
deformation, and then a few shapes are represented over a navigation
period T of the order of 50Ts . � = 0.085.
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FIG. 5. Time-averaged velocity magnitudes (as a function of
confinement C) of different swimmers (� = 0.085): migrating along
one wall (black diamond dashed line), navigating between two walls
(gray circle dotted dashed line), and moving along the channel center
(black square solid line). The insets show characteristic trajectories.

bifurcation diagram. This bifurcation is very abrupt, albeit
it is of supercritical nature. Both slightly before and beyond
the bifurcation the swimmer behaves on average as a puller,
but still it exhibits two very distinct modes of locomotion:
navigation or settling into a quasistraight trajectory (oscillation
of the center of mass in this regime is fixed by the amoeboid
cycle). This complexity is triggered by the intricate nature of
the amoeboid degrees of freedom.

Results: Other force distributions. Including force distribu-
tions up to sixth harmonics with various amplitudes leaves the
overall picture unchanged, pointing to the generic character
of AS. The next step has consisted in linking the nature of
the swimmer to its dynamics. We have monitored a pusher
or puller type of swimmer. If F = 2{sin(ωt) cos(3α) − [β +
cos(ωt)] cos(2α)}n, we have a puller, while if F = 2{[−β +
sin(ωt)] cos(3α) − cos(ωt) cos(2α)}n, we have a pusher (with
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FIG. 6. Average position of the center of mass over a navigation
period as a function of confinement C. � = 0.085. Circles (diamonds)
correspond to the symmetric (asymmetric) motion of the swimmer.
The vertical dotted line is the demarcation line between a pusher and
puller. Note that a puller can either navigate or move close to either
wall.
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FIG. 7. Period of navigation as a function of confinement C. � =
0.085. Circles (diamonds) correspond to the symmetric (asymmetric)
motion of the swimmer.

β > 0). β monitors the strength of the swimmer nature (weak
and strong pusher or puller). We found that for a weak enough
stresslet, symmetric and asymmetric navigations prevail both
for pullers and pushers. For a strong enough stresslet amplitude
(for β > βc ∼ 1), we find that the pusher crashes into the wall,
while a puller settles into a straight trajectory. This means that
there is a qualitative change of behavior triggered by β, on
which we shall report on systematic study in the future.

Results: Navigation period. The navigation period T

exhibits a nontrivial behavior with C (Fig. 7). At small C,
the period scales as T ∼ C−1, and as T ∼ C−2 at inter-
mediate confinement, before attaining a plateau at stronger

confinement. To dig into the reasons for this complex behavior,
we provide here some heuristic arguments. In the first regime,
the NS swims in a straight and monotonous manner towards the
next wall. In that regime, the period is limited by the distance
traveled by the swimmer of the order W = 2R/C. This
naturally yields the C−1 scaling of Fig. 7 for weak C. In the
intermediate confinement regime, the magnitude of velocity
depends linearly on C, so that the period scales as C−2 (see
also Ref. [33]). After the symmetry breaking occurs, the NS
stays close to one of the two walls (inset of Fig. 5), and its center
of mass oscillates with the intrinsic stroke period Ts. In this
regime, the period is independent of C (diamonds in Fig. 7).

Analytical results. We have first performed a linear stability
analysis [33]. We find, for small C, that the stability of
the swimmer is governed by the stresslet sign: For 
 > 0
(pusher) the straight trajectory is unstable, while it is stable
otherwise (puller). For a neutral swimmer the trajectory is
marginally stable (the stability eigenvalue �, for a perturbation
of the form y ∼ e�t , is purely imaginary). We find that in
the intermediate C regime the navigation period behaves as
C−2. Using a systematic multipole expansion, the complex
behavior of the velocity as a function of C (at low C) can be
explained [33].

Discussion. We believe that the global features revealed by
our study will persist in 3D, although extending our work to
3D simulations will be a challenging task. Besides, in order to
better match real cells performing amoeboid swimming (e.g.,
leukocytes), cytoskeleton dynamics and its relation to force
generation will be important ingredients to be included in a
3D modeling.
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