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In this paper, we propose a cusp-capturing physics-informed neural network (PINN) to 
solve discontinuous-coefficient elliptic interface problems whose solution is continuous 
but has discontinuous first derivatives on the interface. To find such a solution using 
neural network representation, we introduce a cusp-enforced level set function as an 
additional feature input to the network to retain the inherent solution properties; that is, 
capturing the solution cusps (where the derivatives are discontinuous) sharply. In addition, 
the proposed neural network has the advantage of being mesh-free, so it can easily 
handle problems in irregular domains. We train the network using the physics-informed 
framework in which the loss function comprises the residual of the differential equation 
together with certain interface and boundary conditions. We conduct a series of numerical 
experiments to demonstrate the effectiveness of the cusp-capturing technique and the 
accuracy of the present network model. Numerical results show that even using a one-
hidden-layer (shallow) network with a moderate number of neurons and sufficient training 
data points, the present network model can achieve prediction accuracy comparable with 
traditional methods. Besides, if the solution is discontinuous across the interface, we can 
simply incorporate an additional supervised learning task for solution jump approximation 
into the present network without much difficulty.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The study of fluid-structure interaction (FSI) problems has been an important research topic in fluid dynamics for cen-
turies, with applications ranging from, for example, fundamental physics, engineering, geophysics, and biomedicine. Typical 
small-scale examples include collisions between droplets in interfacial flows [28,37], the dynamics of red blood cells flow-
ing in pulsating arteries [16,36], and the electrophoretic motion of colloidal particles in electrically charged fluids [11,27]. 
The key components in these examples are fluid flow, deformable interfaces, and the complex mechanisms behind them. 
Moreover, physical parameters (such as viscosity or density) for each subregion of the domain may be different, resulting in 
lower regularity of the solution across the interfaces, thus requiring additional treatments for accurate simulations.

For instance, when the no-slip boundary condition is applied to a fluid-structure interface, the velocity field in the FSI 
problem is continuous in the entire domain, but its derivative is discontinuous across the interface. Among many classical 
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numerical methods for solving such problems, Peskin proposed the immersed boundary (IB) formulation [29,31], which 
transforms the core of solving the velocity field into an elliptic problem with singular forces. The IB method adopts a 
regularized version of the Dirac delta function to discretize the singular forces directly, resulting in only first-order solution 
accuracy [23]. Another way to write the velocity equations is to impose jump conditions directly on the interface. So the 
problem becomes an elliptic interface problem in which the solution is continuous, but its normal derivative has jump 
discontinuity across the interface, which is exactly the formulation we aim to solve in this work.

Since the introduction of the IB formulation, several jump-capturing and high-order methods have been proposed for 
elliptic interface problems with discontinuous coefficients. For instance, LeVeque and Li introduced the immersed interface 
method (IIM) [20], incorporating the jump conditions via local coordinates into the finite difference scheme to achieve 
the overall second-order accuracy in maximum norm. A simple implementation version of IIM that directly uses the jump 
conditions without introducing local coordinates was developed in [13,19] to achieve second-order accuracy in maximum 
norm as well. Liu et al. [22] introduced a boundary condition capturing method (also known as the ghost fluid method 
(GFM)) that is able to solve the elliptic interface problems in a dimension-by-dimension manner, and can capture the 
solution and its normal derivative jumps sharply. However, the original GFM smoothes its tangential derivative, so the 
method is only first-order accurate in the maximum norm. Egan and Gibou [6] extended the original GFM by recovering 
the convergence of the gradients to achieve second-order accuracy without modifying the resultant linear system. There are 
many other Cartesian grid-based methods to solve the above elliptic interface problems accurately and robustly; however, 
we do not intend to have an exhaustive review here.

Besides the grid-based methods described above, the scientific computing community has shown an increased interest 
in solving elliptic interface problems using shallow or deep neural networks. Notice that the neural network approach for 
solving the interface problems has one apparent advantage over the grid-based methods; namely, it is completely mesh-
free and can easily handle problems with complex interfaces or irregular domains. One obstacle for the neural network 
approach is that most of the network has a smooth activation function, so the resulting network is inherently smooth and 
is not a suitable ansatz for the interface problem. We list some related works in literature as follows. A deep Nitsche-type 
method [21] to solve elliptic interface problems with high-contrast discontinuous coefficients was developed in [39]. To deal 
with inhomogeneous boundary conditions, a shallow neural network to approximate the boundary conditions must be em-
ployed in advance. In [9], the authors proposed a deep unfitted Nitsche method for solving elliptic interface problems with 
high contrasts in high dimensions. Unlike using a single network, Wu and Lu [40] proposed an interfaced neural network 
that decomposes the computational domain into two subdomains (one interface case), and each network is responsible for 
the solution on each subdomain. Then an extended multiple-gradient descent method was introduced to train the network. 
A similar piecewise deep neural network for elliptic interface problems was also introduced earlier in [10]. In the above 
neural network approaches, the network architectures usually have deep structures. Recently, the authors have proposed 
a discontinuity capturing shallow neural network (DCSNN) [14] for solving elliptic interface problems with discontinuous 
solutions. By augmenting a coordinate variable to label different pieces of each subdomain, the DCSNN can be trained in 
a single physics-informed neural network (PINN) framework [34]. Meanwhile, we also used the idea proposed by E and 
Yu [7] and developed a completely shallow Ritz network for solving the elliptic interface problems by augmenting the level 
set function as an extra feature input in [18]. We found that it significantly improves the training effectiveness and accu-
racy. Notice that the major difference between DCSNN [14] and the shallow Ritz network [18] is that the former inherently 
represents a discontinuous function while the latter represents a continuous one.

In this paper, we propose a cusp-capturing physics-informed neural network for solving discontinuous-coefficient elliptic 
interface problems. The specific aim of this study is to introduce a network that can present continuous solutions, but with 
discontinuous first derivatives on interfaces. The smooth level set function augmented input in [18] cannot capture the 
derivative discontinuity sharply; thus, we augment a cusp-enforced level set function input to the network instead. Notice 
that, this new modified level set function does not change the interface position (i.e., zero level set). The rest of the paper 
is organized as follows. We present the formulation of the discontinuous-coefficient elliptic interface problems in Section 2. 
In Section 3, we propose a cusp-capturing neural network to solve the model problems. Numerical experiments are shown 
in Section 4 to demonstrate the effectiveness of the proposed cusp-capturing technique and the accuracy of the present 
network, followed by some concluding remarks in Section 5.

2. Discontinuous-coefficient elliptic interface problems

We consider a d-dimensional discontinuous-coefficient second-order elliptic interface problem [2]. Let � ⊂ Rd be a 
bounded domain and � be an embedded (d − 1)-dimensional C1-interface separating � into two subdomains, �− and �+ , 
so � = �− ∪�+ ∪�. The equations of the problem subjected to the interface and boundary conditions are given as follows:

∇ · (β(x)∇u(x)) − α(x)u(x) = f (x), x ∈ �− ∪ �+, (1)

�u�(x�) = 0, �β∂nu�(x�) = ρ(x�), x� ∈ �, (2)

u(xB) = g(xB), xB ∈ ∂�, (3)

where u(x) is the function to be solved, ρ(x�) and g(xB) are given smooth functions, α(x) ≥ 0, f (x) and β(x) > 0 are also 
given but defined in a piecewise smooth manner across the interface �. We use ∂nu to denote the shorthand of normal 
2
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derivative ∇u · n, where n is the unit normal vector pointing from �− to �+ along the interface �. The notation �·�
represents the jump of a quantity across the interface (the one-sided limiting value approaching from �+ minus the one 
from �−). For example,

�β�(x�) = lim
x∈�+,x→x�

β(x) − lim
x∈�−,x→x�

β(x) = β+(x�) − β−(x�), (4)

where the superscripts “±” represent the limits of the function value on the interface. Under this notation, the second 
interface condition in Eq. (2) can be written explicitly as

�β∂nu�(x�) = β+(x�)∂nu+(x�) − β−(x�)∂nu−(x�)

= β+(x�)∂nu+(x�) − β−(x�)∂nu+(x�) + β−(x�)∂nu+(x�) − β−(x�)∂nu−(x�)

= �β�(x�)∂nu+(x�) + β−(x�)�∂nu�(x�) = ρ(x�). (5)

One can immediately see that even with the case of �β�(x�) = 0, the solution u always has the property of �∂nu�(x�) 	= 0
as long as ρ(x�) 	= 0. Along with the first interface condition �u�(x�) = 0 in Eq. (2), we can conclude that the solution u is 
continuous over the domain � but its normal derivative has jump discontinuity across the interface �.

We would also like to point out that although here we focus only on the Dirichlet-type boundary condition (3), one can 
apply the present method to the Neumann or Robin-type boundary condition with no difficulty. In this paper, we aim to 
find the solution to Eqs. (1)-(3) using machine learning techniques in the spirit of physics-informed neural networks [34], 
as introduced in the next section.

3. A cusp-capturing physics-informed neural network

As mentioned before, the solution of Eqs. (1)-(3) is continuous in the domain � but has a jump discontinuity to its 
normal derivative on the interface �. The universal approximation theorems [4,12,32] guarantee the applicability of approx-
imating such continuous solutions using artificial neural networks. However, a neural network with differentiable activation 
functions is undoubtedly smooth, thus it is unlikely to capture the present solution with cusps (the partial derivatives are 
not continuous) in an accurate manner. More precisely, locating and fitting derivative discontinuities in neural network so-
lutions is challenging. Since the partial derivative jumps occur at the interface, it is natural to include the interface position 
as a feature input in the network architecture. In [18], we proposed a shallow Ritz-type method to solve similar interface 
problems (taking β = 1) as Eqs. (1)-(3) in which we add the level set function of the interface as a feature input to the 
network. That is, we use a neural network of the form U (x, z = φ(x)) to approximate the solution u(x) of the problem, 
where φ(x) is the level set function defined in the whole domain �. Here, the interior and exterior region are defined as 
�− = {x ∈Rd |φ(x) < 0} and �+ = {x ∈Rd |φ(x) > 0}, respectively, and the zero level set gives the position of the interface 
�, i.e., � = {x ∈Rd | φ(x) = 0}. With this level set function augmentation, we found that it significantly improves the training 
effectiveness and accuracy. However, since the level set function is smooth, and the neural network function U is smooth 
due to the use of a smooth activation function, the resulting neural network solution u(x) = U (x, z) = U (x, φ(x)) remains 
smooth. That is, the gradient of u

∇u = ∇xU + ∂zU ∇φ, (6)

is continuous so the normal derivative jump �∂nu� = 0 across the interface �. Here, ∇xU ∈ Rd represents a vector with 
partial derivatives of U with respect to the components in x, and ∂zU is the partial derivative of U with respect to z. We 
also suppress the notation of x in the gradients of u and φ since they both are functions of x. Thus, if we want to require 
∇u to be discontinuous across the interface then ∇φ should be discontinuous too. Therefore, we need to modify the original 
smooth level set function accordingly.

3.1. Cusp-enforced level set function augmentation

As mentioned above, we need to modify the level set function so that its gradient is discontinuous across the interface 
without changing the zero level set. This can be done easily by taking the absolute value of the level set function; that is, 
we define φa(x) = |φ(x)|. We therefore call this φa as a cusp-enforced level set function since it is non-differentiable at the 
interface �. Furthermore, one can immediately derive that this cusp-enforced level set function has the gradient jump as 
�∇φa�(x�) = 2∇φ(x�), x� ∈ �. Note that, the above jump condition is evaluated by the limiting values from both sides of the 
interface where ∇φa is well-defined. With this modified level set function, we now define a new neural network solution 
in the form as u(x) = U (x, z) = U (x, φa(x)). Since the neural network function U is smooth, calculating the derivatives of 
the network U with respect to its input variables x and z via automatic differentiation [8] has no problem at all. Thus, the 
gradient jump of u across the interface can be computed directly from Eq. (6) as

�∇u�(x�) = ∂zU�∇φa�(x�) = 2∂zU∇φ(x�). (7)
3
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Fig. 1. Diagram of the L-hidden-layer network structure.

Notice that, in the above implementation we have used �∇xU�(x�) = 0 since U is smooth. By multiplying the normal vector 
n = ∇φ/‖∇φ‖ to the above equation, we obtain the following normal derivative jump of u as

�∂nu�(x�) = 2∂zU‖∇φ(x�)‖. (8)

Therefore, the neural network solution U is capable of capturing the cusp behavior of the solution in Eqs. (1)-(3) even if the 
network function U (x, z) is smooth across its entire Rd+1 domain.

By using the relation ∇u = ∇xU + ∂zU ∇φa in �± , one can explicitly write the following equation after careful calcula-
tions

∇ · (β∇u) = β
(
	xU + 2∇φa · ∇x (∂zU ) + ‖∇φ‖2∂zzU + ∂zU	φa

)
(9)

+ ∇β · (∇xU + ∂zU∇φa) ,

where 	x is the Laplace operator concerning only the variable x.
Now, Eqs. (1)-(3) can be rewritten in terms of U as follows. For succinctness, we introduce the notation Lβ,φa U to 

represent the right-hand side of Eq. (9) so that Eq. (1) is rewritten to the following

Lβ,φa U (x, φa(x)) − α(x)U (x, φa(x)) = f (x), x ∈ �+ ∪ �−. (10)

Using the fact that �∂nφa�(x�) = 2∇φ(x�) · n = 2‖∇φ(x�)‖, we can also rewrite the interface condition �β∂nu�(x�) = ρ(x�)

in Eq. (5) as

�β�(x�)∂nU + (β+(x�) + β−(x�))∂zU ‖∇φ(x�)‖ = ρ(x�) x� ∈ �, (11)

where ∂nU = ∇xU · n. Notice that �u�(x�) = 0 is automatically satisfied since U is a continuous function. The associated 
boundary condition (3) reads

U (xB , φa(xB)) = g(xB) xB ∈ ∂�. (12)

The remaining task is to train the network to simultaneously satisfy Eq. (10), the jump condition (11), and the boundary 
condition (12) with appropriate loss function.

3.2. Physics-informed neural networks

In this subsection, we present a physics-informed neural network to approximate the solution U (x, φa(x)) for 
Eqs. (10)-(12). The convergence of PINNs for linear elliptic PDEs was studied recently in [35]. Fig. 1 presents the struc-
ture of a L-hidden-layer feed-forward fully connected neural network where (x, φa(x))T ∈Rd+1 represents the d + 1 feature 
input of the network (recall that φa(x) is the cusp-enforced level set function). We label the input layer as layer 0 and 
denote the feature input as v[0] = (x, φa(x))T . The output at the 
-th hidden layer with N
 neurons, denoted as v[
] ∈RN
 , 
presents an affine mapping of the output of layer 
 − 1 (i.e., v[
−1]) followed by an action of the activation function σ in a 
componentwise manner as

v[
] = σ
(

W [
]v[
−1] + b[
]) , 
 = 1, · · · , L, (13)

where the matrix W [
] ∈RN
×N
−1 contains the weights connecting the structure from layer 
 − 1 to layer 
, and b[
] ∈RN


is the bias vector at layer 
. Finally, we denote the output of this multiple-hidden-layer network as

UN (x, φa(x); θ) = W [L+1]v[L], (14)
4



Y.-H. Tseng, T.-S. Lin, W.-F. Hu et al. Journal of Computational Physics 491 (2023) 112359
where W [L+1] ∈ R1×NL . The notation θ denotes the vector collecting all trainable parameters (including all the weights 
and biases) so the dimension of θ is the total number of parameters in the network that can be easily counted as Nθ =
NL + 
L


=1(N
−1 + 1)N
 .

In the training process, we select MI points in the region of �− ∪�+ , 
{

xi
}MI

i=1, M� points on the interface �, 
{

xi
�

}M�

i=1, and 
MB points on the domain boundary ∂�, 

{
xi

B

}MB

i=1, so totally M = MI + M� + MB training points. Under the physics-informed 
framework, we hereby define the loss function as the mean squared error of the residual of differential equation (10), the 
jump condition (11), and the boundary condition (12) as

Loss(θ) = 1

MI

MI∑
i=1

∣∣∣LI (xi, φa(xi); θ)

∣∣∣2 + c�

M�

M�∑
i=1

∣∣∣L�(xi
�,0; θ)

∣∣∣2

+ cB

MB

MB∑
i=1

∣∣∣LB(xi
B , φa(xi

B); θ)

∣∣∣2
, (15)

where the residual error LI , interface condition error L� , and boundary condition error LB , are shown respectively as follows:

LI (x, φa(x); θ) = Lβ,φa UN (x, φa(x); θ) − α(x)UN (x, φa(x); θ) − f (x), (16)

L�(x�,0; θ) = �β�(x�)∂nUN (x�,0; θ) + (β+(x�) + β−(x�))∂zUN (x�,0; θ)‖∇φ(x�)‖
−ρ(x�), (17)

LB(xB , φa(xB); θ) = UN (xB , φa(xB); θ) − g(xB). (18)

The constants c� and cB appeared in the loss function (15) are chosen to balance the contribution of the terms related 
to the interface jump condition (11) and boundary condition (12), respectively. In latter numerical experiments, we might 
need to use network with smooth level set function φ augmentation UN (x, φ(x); θ) for comparison purpose. In that case, 
the interface error loss in Eq. (17) should be replaced (can be easily derived) by

L�(x�,0; θ) = �β�(x�) (∂nUN (x�,0; θ) + ∂zUN (x�,0; θ)‖∇φ(x�)‖) − ρ(x�). (19)

Meanwhile, throughout the rest of paper, we use the Levenberg-Marquardt (LM) algorithm [25] as the optimizer to train the 
network, and use the notation uN to denote the network prediction solution.

Remark. The cusp-capturing PINN is designed for solving elliptic interface problems where the solution is continuous but 
the derivatives have jumps. The present method can be easily extended to handle problems with non-zero solution jumps. 
If the solution is discontinuous across the interface, we can incorporate an additional supervised learning task for solution 
jump approximation and the remaining part of the solution can be found by the cusp-capturing PINN. To see this, suppose 
we want to solve Eqs. (1)-(3) but with nonzero solution jump �u�(x�) = λ(x�), ∀x� ∈ � instead. We first write the solution as 
u(x) = v(x) + w(x) in which we assume v(x) has the jump discontinuity �v�(x�) = λ(x�) so w(x) is continuous (�w�(x�) =
0). We further assume v(x) has the form

v(x) =
{

V (x) x ∈ �−,

0 x ∈ �+,
(20)

so the jump �v�(x�) = −V (x�) = λ(x�) for x� ∈ �. The construction of V (x) will become clear later. Substituting the 
expression of u(x) into Eqs. (1)-(3), one can immediately obtain the equations for w(x) as

∇ · (β(x)∇w(x)) − α(x)w(x) =
{

f (x) − ∇ · (β(x)∇V (x)) + α(x)V (x), x ∈ �−,

f (x), x ∈ �+ (21)

�w�(x�) = 0, �β∂n w�(x�) = ρ(x�) + β−(x�)∂n V (x�), x� ∈ �, (22)

w(xB) = g(xB), xB ∈ ∂�. (23)

Note that, the flux jump in Eq. (22) is obtained by the fact �β∂n v�(x�) = −β−(x�)∂n V (x�). The above equations (21)-(23)
can be solved by the present cusp-capturing PINN since the solution w(x) now is continuous.

The remaining question is how to construct the function V (x) so that V (x�) = −λ(x�) for x� ∈ �. Here, we simply adopt 
a shallow (one-hidden-layer) fully-connected feedforward neural network to approximate V by supervised learning. That is, 
we randomly choose M� points 

{
xi

�

}M�

i=1 on the interface �, and minimize the corresponding mean squared error loss as

Loss(θ̃ ) = 1

M�

M�∑
i=1

(
V (xi

�; θ̃ ) + λ(xi
�)

)2
, (24)

where θ̃ denotes the vector collecting the trainable weights and biases used in the network.
5
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4. Numerical results

In this section, we aim to demonstrate the capability of the present neural network method for solving elliptic interface 
problems, Eqs. (1)-(3). We set the penalty constants in the loss function cB = c� = 1 to focus on the accuracy check of the 
present cusp-capturing technique. The merit of the proposed cusp-capturing PINN is to allow one to use a smooth neural 
network U (x, z) to learn the non-smooth solution, u(x), through the relation u(x) = U (x, z = φa(x)). The only requirement 
of the choice of activation function is subject to the C2-regularity of u(x) in each subdomain. Thus, we simply choose the 
sigmoid function, σ(x) = 1

1+e−x as our activation function. For the following numerical examples, we employ different depth 
networks (from 1 to L hidden layers) with equal number of neurons in each hidden layer N1 = N2 = · · · = NL = N . The 
training and test data points are generated by the Latin hypercube sampling algorithm [24], which effectively avoids the 
clustering of data points at some specific locations so resulting in a nearly random sampling. To measure the accuracy of 
the network solution, we choose Mtest points (different from the training points) in � to calculate the relative L∞ and L2

errors defined respectively as ‖uN − u‖∞/‖u‖∞ and ‖uN − u‖2/‖u‖2, where

‖u‖∞ = max
1≤i≤Mtest

|u(xi)|, ‖u‖2 =
√√√√ 1

Mtest

Mtest∑
i=1

(u(xi))2.

In general, we set Mtest = 100M , where M is the total number of training points. Since the predicted results will vary 
slightly for each experiment (it is affected by the randomness of the training and test data points, and the initialization of 
trainable parameters), we show the average value of the errors and losses over 5 trial runs.

In the training procedure, we use the Levenberg-Marquardt (LM) algorithm as our optimizer and update the damping 
parameter μ by the strategies introduced in [38]. The training is stopped when the loss value Loss(θ) is below a threshold 
εθ (problem dependent) or the maximum iteration (training) step epoch = 3000 is reached. All trials are run on a desk-
top equipped with one NVIDIA GeForce RTX3060 GPU. We implement the cusp-capturing PINN architecture using Pytorch 
(v1.13) [33] and all trainable parameters (weights and biases) are initialized using Pytorch default settings. The source codes 
used throughout this paper are available on GitHub at https://github .com /teshenglin /cusp _capturing _PINN.

Example 1. As the first example, we demonstrate the cusp-capturing capability for the present network by considering the 
following one-dimensional Poisson equation on an interval � = [0, 1] with an interface point at x� = 1

3 :

d2u

dx2
= 0, x ∈ (0,1)\{x�}, (25)

�u�(x�) = 0, �
du

dx
�(x�) = 1, (26)

u(0) = u(1) = 0. (27)

The exact solution of the above problem can be easily derived as

u(x) =
{

(x� − 1)x, x ∈ [0, x�),

x�(x − 1), x ∈ [x�, 1], (28)

where the cusp appears exactly at the interface x� . We thus choose φ(x) = x − x� as the smooth level set function so that 
φa(x) = |x − x�| represents the cusp-enforced level set function.

For the neural network in this test, we use a completely shallow network structure (L = 1) with N neurons in the hidden 
layer; here, the input dimension is two, one for x and the other for the augmented feature input φa . The number of overall 
training data points is M = MI + 3, including MI points in the interval (0, 1), two points (MB = 2) at the boundary, and one 
point (M� = 1) at the interface. We use only 2 neurons in the hidden layer and 13 training points, that is, (N, M) = (2, 13). 
After completing the training process, we use Mtest = 1000 test points to examine the predicted accuracy of the network 
solution.

Fig. 2(a) shows the profiles of the exact solution u (denoted by the red-dashed line) and the network-predicted solution 
uN with augmented input φa (solid line). One can immediately see that the φa input network solution captures the cusp 
sharply where the L∞ error achieves ‖u − uN ‖∞ = 7.01 × 10−8. Meanwhile, the corresponding loss drops significantly 
within just 40 epochs, as shown in panel (b) of the figure.

Then we test to see if the solution can be learned by using a level set function augmented input (not the cusp-enforced 
one); that is, we assume uN = UN (x, φ(x)). We train the network with (N, M) = (20, 103). The learned solution is shown 
in Fig. 2(a) (denoted by “◦”) and the corresponding loss is presented in (b). It turns out that the φ input network learns a 
completely wrong solution uN ≈ 0. This result is not surprising, since this network solution is inherently smooth, so all the 
jumps are zero, which gives L�(x�, 0; θ) = −ρ(x�) that is independent of the trainable parameters θ . So this smooth neural 
network tries to minimize only the residual error and boundary error, that is, to learn a solution with zero second-order 
derivative and zero boundary condition. The loss for this φ input network shown in panel (b) is dominated by the interface 
loss L� that gives an O (1) value throughout the whole training process.
6
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Fig. 2. (a) The profiles of the exact solution u, the network solutions uN with augmented input φ and φa , and the network solution using ReLU activation 
function with φ augmented input. (b) The corresponding losses in (a). (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Meanwhile, one may wonder if a feed-forward network using the ReLU activation function with augmented smooth 
level set function φ can work due to the cusp-like profile of the ReLU function. Notice that, the ReLU function is linear 
so a shallow network (one hidden layer) with ReLU activation can learn the differential equation (25) with zero loss (i.e.
LI (x, φ(x), θ) = 0). However, it seems to be difficult to locate the cusp singularity for such a network which we can see from 
the solution profile (denote by “�”) in Fig. 2(a). Again, like the sigmoid activation function with φ augmented input, the 
corresponding loss (also see in Fig. 2(b)) remains to be O (1) which leads to unsuccessful training. As discussed in [40], a 
single network with non-differentiable activation usually does not satisfy the differential requirement in high-dimensional 
interface problems. As a result, the cusp singularity obtained by the network does not coincide with the given interface. 
This is exactly what we see from Fig. 2(a) even in a one-dimensional case.

Example 2. As the second example, we consider an elliptic equation with a piecewise-constant coefficient defined in the 
two-dimensional domain � = [−1, 1] × [−1, 1]. The embedded interface � is described by the zero level set of the function 
φ(x, y) = x2

0.52 + y2

0.52 − 1, separating � into the inner (�−) and outer (�+) regions. We choose the exact solution u and the 
coefficient β , respectively, as

u(x, y) =
⎧⎨
⎩

1 − exp
(

1
η

(
x2

0.52 + y2

0.52 − 1
))

, (x, y) ∈ �−,

−γ ln
(

x2

0.52 + y2

0.52

)
, (x, y) ∈ �+,

(29)

and

β(x, y) =
{

β−, (x, y) ∈ �−,

β+, (x, y) ∈ �+,

where the parameter η = β−/β+ represents the ratio of β− to β+ . (Here, we fix β+ = 1 and adjust η to control the contrast 
of the coefficients.) One can immediately see that the solution is continuous across the interface � but its normal derivative 
has jump discontinuity as �β∂nu� = −4(γ − 1). The corresponding right-hand side function f can be calculated directly 
from Eq. (1) and the boundary condition g is given by the exact solution u on ∂�. We introduce a number M0 which can 
be regarded as the grid number used in each spatial dimension as in traditional grid-based methods so the training data 
set includes MI = M2

0 points in �− ∪ �+ , M� = 3M0 points on the interface �, and MB = 4M0 points on the boundary ∂�, 
respectively. Thus, the total training points M = M2

0 + 3M0 + 4M0.
Next, we will discuss some numerical issues about the implementation of cusp-capturing strategy, including the accuracy 

study of shallow neural networks with different number of neurons and training points, and the comparisons of different 
optimizers and different augmented inputs.

Accuracy check: shallow neural networks with different number of neurons and training points. The first experiment aims 
to study the number of neurons and training points needed to get satisfactory results. To test whether the proposed method 
works for different types of boundary condition, we impose the Dirichlet boundary condition at x = ±1 and the Neumann 
boundary condition at y = ±1. We choose α = 1, η = 10, γ = 2, and fix L = 1 such that the neural network is completely 
shallow. Table 1 shows the relative L∞ and L2 errors between the network solution uN and the exact solution u when 
using different numbers of neurons N and training points M . Also, we examine the relative L∞ error of ∇uN by the 
7
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Table 1
Relative errors of u and ∇u, and training losses for the shallow network solution with different number of neu-
rons N and training points M . Here, α = 1, η = 10, and γ = 2 in Example 2.

(M0, M) (N, Nθ )
‖uN −u‖∞

‖u‖∞
‖uN −u‖2

‖u‖2

‖∇uN −∇u‖∞
‖∇u‖∞ Loss(θ)

(20,100) 1.13 × 10−3 2.82 × 10−3 2.48 × 10−3 2.23 × 10−4

(20,540) (30,150) 4.41 × 10−5 2.33 × 10−4 2.08 × 10−4 1.61 × 10−7

(40,200) 1.14 × 10−5 4.56 × 10−5 4.10 × 10−5 2.29 × 10−9

(50,250) 5.17 × 10−6 3.69 × 10−5 3.09 × 10−5 1.04 × 10−10

(20,100) 7.75 × 10−4 4.47 × 10−4 1.17 × 10−3 7.12 × 10−5

(30,1110) (30,150) 2.77 × 10−5 2.21 × 10−5 7.73 × 10−5 8.79 × 10−8

(40,200) 4.40 × 10−6 4.30 × 10−6 1.75 × 10−5 2.97 × 10−9

(50,250) 1.13 × 10−6 1.07 × 10−6 4.33 × 10−6 1.17 × 10−10

Fig. 3. Error bar plots associated with Table 1. Each bar represents the errors over 5 trial runs. (a) Relative L∞ error of uN ; (b) Relative L2 error of uN ; 
(c) Relative L∞ error of ∇uN .

formula ‖∇uN −∇u‖∞/‖∇u‖∞ with the definition ‖∇u‖∞ = 1
2

(
‖ ∂u

∂x ‖∞ + ‖ ∂u
∂ y ‖∞

)
. Notice that since the network has only 

one hidden layer, the overall number of trainable parameters is Nθ = N(d + 3) = 5N for this two-dimensional problem. The 
corresponding final loss values are also shown in the table. One can see that the present model can achieve a prediction 
accuracy of about 0.1% in relative L∞ and L2 errors even using one hidden layer with merely N = 20 neurons. As we 
increase the number of neurons from N = 20 to N = 50, the relative error decreases from the magnitude O (10−3) to 
O (10−6), and the loss drops from O (10−4) to O (10−10) accordingly. In addition, one can also see that all relative errors 
decrease by increasing the number M0 = 20 to M0 = 30 (same as increasing the number of total training points M). From 
this numerical experiment, we conclude that the solution errors can indeed be reduced by increasing the number of neurons 
or training points, which provides an informal evidence for the numerical convergence of the present method. The errors for 
the solution gradient show a similar convergence trend as the solution errors. In addition, since the derivatives are computed 
by automatic differentiation, the relative L∞ errors of the gradient seem to have almost the same order of magnitude as 
the ones of the solution itself. We also present the error bar plots of 5 trail runs associated with Table 1 in Fig. 3.

We depict the solution profile uN in Fig. 4(a), the corresponding absolute error |uN − u| in Fig. 4(b), and the cross-
sectional view of uN and u along the line y = 0 in Fig. 4(c). One can clearly see that the cusps on the interface are 
accurately captured and the largest error occurs at the domain boundary rather than on the interface, which indicates the 
effectiveness of the present network model.

Comparison of different optimizers. The reasons why we choose Levenberg-Marquardt algorithm as our optimizer are two-
fold. First, the LM algorithm is a combination of Gauss-Newton and gradient descent method which is suitable for nonlinear 
least squares problems. (The minimization of the loss function in the present paper is a nonlinear least square problem.) 
Meanwhile, the number of parameters to be trained in our proposed neural network is moderate (a few hundreds), so the 
cost per epoch for LM algorithm is acceptable. Second, the LM algorithm usually converges faster than commonly used 
optimizers such as Adam [15] and L-BFGS [17]. Here, we compare the training performance for three different optimizers 
(Adam, L-BFGS, LM) by showing the corresponding training loss evolutions in Fig. 5. We use the previous setup and fix the 
number of training points M = 1110 but vary the number of neurons from N = 30 to 50. One can see that, the LM optimizer 
8



Y.-H. Tseng, T.-S. Lin, W.-F. Hu et al. Journal of Computational Physics 491 (2023) 112359
Fig. 4. (a) The solution profile of uN ; (b) Absolute error |uN − u|; (c) Cross-sectional view of uN (blue-solid line) and u (red-dashed line) along the line 
y = 0. The figure is the case when (M0, M) = (30, 1110) and (N, Nθ ) = (50, 250) in Table 1.

Fig. 5. Comparison of loss evolutions using different optimizers: Adam (dashed line), L-BFGS (dashed-dotted line), and LM (solid line). (a) N = 30; (b) 
N = 40; (c) N = 50. All cases use 1110 training data points.

can effectively reduce the loss to O (10−10) within 3000 epochs when the number of neurons increases. In contrast, the 
Adam and L-BFGS optimizers reduce the loss values more slowly, and barely achieve the losses of the magnitude O (10−2)

and O (10−4) even up to 105 epochs. Although not shown here, the final relative errors of LM algorithm show about three 
orders of magnitude smaller than the ones obtained by the Adam or L-BFGS.

Comparison of different augmented inputs. In the third experiment, we demonstrate the robustness of present cusp-
enforced level set function augmented input φa = |φ|. Here, we keep η = 10 but choose α = 0 and impose Dirichlet 
boundary condition on ∂� for simplicity. We also set γ = 1 so the flux jump �β∂nu� is zero while the solution u still 
has discontinuous first derivatives to focus on the expressibility of the present network. We compare the relative errors and 
the losses of using either φ or φa as the augmented input in a fixed shallow neural network with the number of neurons 
N = 40. The total number of training points used is M = 1110 (or M0 = 30). The results are shown in Table 2 where the 
used augmented input is listed in the first column. One can see that the prediction accuracy for the level set function input 
φ is quite poor. The relative errors for φ and φa input are O (10−1) and O (10−5), respectively, so the latter significantly 
outperforms the former. Therefore, the present cusp-enforced augmented feature input is indeed more accurate and capable 
of tackling the interface problem with discontinuous first derivatives.

We also show the evolutionary plots of training loss for the two cases in Fig. 6(a). After a few hundreds of epochs, the 
training loss for the case with augmented input φ becomes sluggish while the one with φa input continues to go down 
afterwards and reaches to the order of 10−8 eventually.
9
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Table 2
Relative errors and training loss for the shallow network with different augmented inputs, φ and φa . Here, α = 0, 
η = 10, and γ = 1 in Example 2. (M0, M) = (30, 1110), (L, N, Nθ ) = (1, 40, 200).

Augmented input ‖uN − u‖∞/‖u‖∞ ‖uN − u‖2/‖u‖2 Loss(θ)

φ 8.01 × 10−1 9.13 × 10−1 5.57 × 10−2

φa 2.98 × 10−5 3.32 × 10−5 9.17 × 10−9

Fig. 6. (a) The evolutions of training Loss(θ) corresponding to Table 2. (b) The evolutions of training Loss(θ) corresponding to Table 3.

Table 3
Relative errors, training losses, and total training time for the shallow network with an augmented input (φ or 
φa) or without augmented input. Here, α = 0, η = 1, and γ = 1 in Example 2. (M0, M) = (30, 1110).

Augmented input ‖uN − u‖∞/‖u‖∞ ‖uN − u‖2/‖u‖2 Loss(θ) Elapsed time

None (PINN) 1.59 × 10−1 9.15 × 10−2 4.34 × 100 10.9(s)
φ 8.55 × 10−3 5.43 × 10−3 9.07 × 10−9 17.8(s)
φa 1.65 × 10−5 1.91 × 10−5 4.61 × 10−10 22.1(s)

To further investigate the power of function expressibility on the proposed cusp-enforced level set function augmen-
tation, we consider a special case with η = 1 (β− = β+ = 1) and γ = 1 so that the jumps �β� = 0 and �β∂nu� = 0
simultaneously. One can immediately see from Eq. (5) that the normal derivative jump of u equals to zero too, i.e., �∂nu� = 0. 
In this case, the solution u is continuously differentiable across the interface � so one might wonder if the level set function 
augmentation makes any differences. Table 3 shows the results for a shallow network with φ, φa and without augmented 
input (denoted by “None”). For the one without augmented variable, the input is solely the position x. To have the same 
number of parameters used in the network, the one without augmented input uses N = 50 neurons while the ones with 
augmented level set function input use N = 40 neurons. Despite the fact that the solution is C1, the network with solely x
input cannot train the solution properly as the training loss remains O (1) (see Fig. 6(b)) so the relative errors are greater 
than 5%. Again, the errors with φa augmented input are smaller than the ones with φ input in two orders of magnitude; 
that is, O (10−5) versus O (10−3). One can perceive that the network with cusp-enforced level set function augmentation 
still can predict the solution more accurately even though it is designed to capture the first-order derivatives correctly while 
the second-order derivatives are discontinuous across the interface in this example.

We also show the overall training time in the last column of Table 3. Under the same setting, the training time per epoch 
using cusp-capturing PINN is indeed more costly than the one using the PINN (without any augmented input). However, as 
discussed earlier, if we use merely PINN, we are unable to train the network successfully even though the solution has the 
zero flux jump.

Example 3. The third example illustrates that the present method is applicable for solving interface problems with high-
contrast coefficients defined on irregular domains. We consider a five-fold flower region � = {(x(r, θ), y(r, θ)) ∈R2 | r(θ) ≤
1 − 0.2 cos(5θ)} with an embedded interface, � = {(x, y) ∈ R2 | x2 + y2 = 1

4 }. As in Example 2, the coefficient β is defined 
in a piecewise-constant manner. The exact solution u is defined as
10
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Table 4
Relative errors and training losses in Example 3.

η = β−/β+ (L, N, Nθ ) ‖uN − u‖∞/‖u‖∞ ‖uN − u‖2/‖u‖2 Loss(θ)

(1,63,315) 3.29 × 10−5 3.29 × 10−5 1.35 × 10−9

104 (2,15,315) 3.65 × 10−5 3.82 × 10−5 7.29 × 10−10

(3,11,319) 8.73 × 10−5 1.24 × 10−4 3.32 × 10−9

(1,190,950) 4.25 × 10−3 1.42 × 10−3 6.25 × 10−9

10−4 (2,28,952) 3.88 × 10−4 1.28 × 10−4 1.82 × 10−11

(3,20,940) 1.50 × 10−3 5.07 × 10−4 3.05 × 10−10

Fig. 7. (a) and (d): The profile of uN ; (b) and (e): Absolute point-wise error |uN − u|; (c) and (f): Cross-sectional view of uN (blue solid line) and u (red 
dashed line) along the line y = x. The upper panel is for η = 104 with (L, N, Nθ ) = (2, 15, 315), and the lower panel is for η = 10−4 with (L, N, Nθ ) =
(2, 28, 952) in Example 3.

u(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1
β−

((
x2 + y2

) 3
2 − 1

8

)
, (x, y) ∈ �−,

3
β+

((
x2 + y2

) 3
2 − 1

8

)
, (x, y) ∈ �+,

(30)

and the Dirichlet boundary condition is imposed for simplicity. This problem was similarly studied by Wang et al. [39]
using deep Ritz method on a square domain with an embedded circular interface. Again, the contrast ratio is defined by 
η = β−/β+ , and we fix β+ = 1 so η = β− . Here, we consider two high-contrast ratios; namely η = 10−4 and 104. The 
cusp-enforced level set function is chosen as φa(x, y) = ∣∣4(x2 + y2) − 1

∣∣. We generate M = 1498 training data (MI = 1138, 
MB = 240, and M� = 120) for the case of η = 104, and employ the networks comprising from single to three hidden layers. 
The number of neurons for each network is chosen such that the number of trainable parameters Nθ is almost the same. 
As shown in Table 4, for the contrast ratio η = 104, all network solutions can achieve accurate prediction with relative L2

errors ranging from O (10−4) to O (10−5), which outperform the results obtained in [39]. However, for the contrast ratio 
η = 10−4, the magnitude of exact solution u in �− is of the order O (103) which is much larger than the solution in �+ of 
O (1) (see also in Fig. 7(d)). So we have to use more neurons and training points (M = 2959 with MI = 2519, MB = 240, and 
M� = 200) to train the networks. In this case, the relative errors range from O (10−3) to O (10−4). In addition, we depict 
the network solution profile, absolute point-wise error, and the cross-sectional view along y = x in Fig. 7. The upper and 
lower panels are for the contrast ratio η = 104 and 10−4, respectively. One can see that, without paying extra numerical 
efforts, the present model is able to tackle the interface problems in irregular domains thanks to the mesh-free advantage 
of neural network approximation. On the other hand, it could be quite tedious in implementation for traditional grid-based 
methods to handle such problems.

Example 4. In the fourth examples, we deal with the three-dimensional discontinuous variable-coefficient case and compare 
the accuracy of the present network solution with one of the immersed interface method (IIM) in [5]. The domain is set as 
11
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Table 5
Relative errors and training losses in Example 4. The results produced by IIM use 104 × 104 × 104 grid points.

b (L, N, Nθ ) ‖uN − u‖∞/‖u‖∞ ‖uN − u‖2/‖u‖2 Loss(θ)

(1,40,240) 1.90 × 10−6 2.17 × 10−6 7.13 × 10−11

1 (2,12,228) 1.15 × 10−6 1.77 × 10−6 7.53 × 10−11

(3,9,234) 1.49 × 10−6 1.52 × 10−6 5.86 × 10−11

IIM 9.59 × 10−5

(1,40,240) 2.48 × 10−6 1.92 × 10−6 3.68 × 10−11

10 (2,12,228) 3.82 × 10−6 1.84 × 10−6 5.59 × 10−11

(3,9,234) 3.95 × 10−6 3.11 × 10−6 3.46 × 10−11

IIM 1.01 × 10−4

(1,40,240) 5.04 × 10−6 3.51 × 10−7 7.83 × 10−11

1000 (2,12,228) 5.89 × 10−6 6.38 × 10−7 1.43 × 10−10

(3,9,234) 4.40 × 10−6 5.95 × 10−7 2.21 × 10−10

IIM 1.61 × 10−4

the cube � = [−1, 1] ×[−1, 1] ×[−1, 1] in which the embedded interface is given by � = {(x, y, z) ∈R3 | x2 + y2 + z2 = r2
0}. 

The exact solution u and the variable-coefficient β are chosen the same as in [5],

u(x, y, z) =
⎧⎨
⎩

r2, r < r0,

r2
0 + 1

b

(
r4

2 + r2 − r4
0
2 − r2

0

)
, r ≥ r0,

and

β(x, y, z) =
{

r2 + 1, r < r0,

b, r ≥ r0,

where r0 = 1/2, r = √
x2 + y2 + z2, and the source term f (x, y, z) = 10r2 + 6. The solution satisfies the homogeneous 

jump conditions �u� = 0 and �β∂nu� = 0. However, the variable coefficient β controlled by the parameter b implies the 
discontinuity of the normal derivative �∂nu� at the interface �. The cusp-enforced level set function is chosen as φa(x, y, z) =∣∣4(x2 + y2 + z2) − 1

∣∣.
For the sampling of training data points, we generate MI data points in the region �+ ∪ �− , and MB on the domain 

boundary (MB/6 uniformly distributed training points on each face), while M� data points on the surface � are generated by 
DistMesh [30]. In each of the following tests, the number of overall training points used is M = 3360 (MI = 800, MB = 2400, 
and M� = 160).

Table 5 shows the relative errors and losses of the present method for three cases of b = 1, 10 and 1000. Surprisingly, 
no matter how large the parameter b is, the present method with single- or multiple-hidden-layer structure gives accurate 
network predictions with the relative L∞ and L2 errors of the magnitude O (10−6). Here, we also present the results 
produced by IIM [5] using 104 × 104 × 104 uniformly distributed grid points. It should be noted that, in 3D IIM, the total 
number of degree of freedom (unknowns) is 1043 while the number of trainable parameters is just about 240 for the present 
method. One can clearly see that our results outperform the ones obtained by IIM in almost two orders of magnitude in the 
relative L∞ error.

Example 5. In this example, we consider a problem of dimension d = 6 to show that the present method is able to solve 
high-dimensional problems. Same problem was also solved in [18] using a shallow Ritz method. Here we consider the 
domain � as a 6-sphere of radius 0.6 enclosing a smaller 6-sphere of radius 0.5 as �− . The cusp-enforced level set function 
is chosen as φa(x) = ∣∣(‖x‖2/0.5)2 − 1

∣∣, where x = (x1, x2, x3, x4, x5, x6). We fix α = 0, a constant coefficient β(x) = 1, and 
the exact solution is defined as

u(x) =
{

exp(0.52 − ‖x‖2
2) + ∑5

i=1 sin(xi) x ∈ �+,

1 + 2 sin(0.52 − ‖x‖2
2) + ∑5

i=1 sin(xi) x ∈ �−.
(31)

The right-hand side functions can be obtained using Eqs. (1)-(3).
We use a shallow network (L = 1) structure with M = 2628 points to train the network. The results are shown in Table 6. 

Using 40 neurons in the hidden layer (and correspondingly 360 trainable parameters), the relative L∞ and L2 errors are 
in the order of O (10−6) and O (10−7), respectively. This example shows that the present method is applicable to solve 
high-dimensional elliptic interface problems.

Example 6. Next, we take an example in [1] that has its solution being discontinuous and make an accuracy comparison 
with the recent mesh-free methods [1,26]. We consider a two-dimensional computational domain � = [−1, 1] ×[−1, 1] with 
12
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Table 6
Relative errors and losses with M = 2628 training data points where (MI , MB , M�) = (500, 1064, 1064) in Example 5.

(N, Nθ ) ‖uN − u‖∞/‖u‖∞ ‖uN − u‖2/‖u‖2 Loss(θ)

(10,90) 2.16 × 10−3 1.37 × 10−3 1.08 × 10−4

(20,180) 7.69 × 10−4 2.45 × 10−4 1.48 × 10−6

(30,270) 9.54 × 10−5 3.79 × 10−5 1.51 × 10−8

(40,360) 1.86 × 10−6 6.90 × 10−7 5.77 × 10−11

Table 7
Comparison of L∞ errors using the present method and two recent mesh-free methods [1,26] in Example 6. The number in the 
parentheses represents the number of m with the highest degree of polynomial m − 1 used in [26].

(L, N, Nθ , M) Present No. nodes Ahmad et al. [1] No. nodes Oruç [26]

(1,155,775,3150) 4.31 × 10−3 1600 8.75 × 10−3 1365 (23) 1.54 × 10−3

(2,25,775,3150) 3.78 × 10−4 6400 1.52 × 10−3 2490 (25) 1.04 × 10−4

(3,20,940,4535) 3.72 × 10−5 25600 - 4065 (27) 4.08 × 10−6

Fig. 8. The corresponding network solution plots in Example 6. (L, N, Nθ ) = (3, 20, 940), (MI , MB , M�) = (3635, 600, 300). (a) The profile of the network 
solution uN ; (b) Cross-sectional view of uN (blue solid line) and u (red dashed line) along the line y = x.

an embedded circular interface � represented by the zero level set function φ(x, y) = x2 + y2 −
(

2
3

)2
. The exact solution is 

expressed as

u(x, y) =
{

sin(4πx) sin(4π y) + 7, (x, y) ∈ �−,

5 exp(−x2 − y2), (x, y) ∈ �+,

and the coefficient β is a piecewise constant with β− = 2 and β+ = 3 in �− and �+ , respectively. This example also 
aims to demonstrate the applicability of the proposed method presented in the Remark since the above analytic solution is 
discontinuous across the interface. Following the procedures in the Remark, we use a shallow network with 100 neurons 
and 1000 random points x� on the interface to train the function V (x) satisfying V (x�) = −�u�(x�). Once V is available 
(thus v is obtained), we apply the present cusp-capturing PINN to solve Eqs (21)-(23) to obtain the solution w . Then we 
can recover the solution u = v + w . Table 7 presents the L∞ errors of the proposed method and two other non-neural 
network mesh-free methods, including the local mesh-free method based on LMM2P in [1] and the Pascal polynomials-
based multiple-scale approach in [26].

The present networks with the number of hidden layer L = 1, 2 use exactly same number of trainable parameters Nθ =
775 and same number of total training points M = 3150 (MI = 2550, MB = 400, and M� = 200) which give the L∞ errors 
ranging from the magnitude O (10−3) to O (10−4). Here, using a deeper network seems to predict more accurate results 
than the shallow one under the same number of trainable parameters used. Therefore, we use a deep network (L, N, Nθ ) =
(3, 20, 940) with M = 4535 (MI = 3635, MB = 600, and M� = 300) training points to reduce the L∞ error to the magnitude 
of O (10−5), where the solution profile uN and its cross-sectional view along the line y = x are shown in Fig. 8. In the 
Table, the number of nodes indicates the number of mesh-free points used in these methods which works like the number 
of training points M used in the present method. One can immediately see that our numerical results are slightly more 
accurate than the ones in [1] and less accurate than the ones obtained in [26].
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Table 8
Relative errors and training losses in Example 7.

(N, Nθ ) ‖uN − u‖∞/‖u‖∞ ‖uN − u‖2/‖u‖2 Loss(θ)

(25,150) 7.55 × 10−4 5.03 × 10−4 1.16 × 10−7

(50,300) 3.04 × 10−5 1.09 × 10−5 1.54 × 10−9

(100,600) 3.07 × 10−6 1.05 × 10−6 1.36 × 10−11

Fig. 9. (a) The illustration of domain and interface geometries in Example 7. (b) The cross-sectional view of the network solution uN on z = 0. The red and 
grey curves indicate the corresponding cross-sectional interface and domain boundaries, respectively.

Example 7. The last example is taken from [3], in which we consider a spherical shell � = {(x, y, z) ∈ R3 | 0.1512 ≤ x2 +
y2 + z2 ≤ 0.9112} where a complex embedded interface � is represented by the zero level set of the level set function

φ(x, y, z) =
√

x2 + y2 + z2 − r0

(
1 +

(
x2 + y2

x2 + y2 + z2

)2 3∑
k=1

ak cos
(

nk

(
tan−1

( y

x

)
− θk

)))
,

and the setup of parameters is shown as follows:

r0 = 0.483,

⎛
⎝ a1

a2
a3

⎞
⎠ =

⎛
⎝ 0.1

−0.1
0.15

⎞
⎠ ,

⎛
⎝ n1

n2
n3

⎞
⎠ =

⎛
⎝ 3

4
7

⎞
⎠ , and

⎛
⎝ θ1

θ2
θ3

⎞
⎠ =

⎛
⎝ 0.5

1.8
0

⎞
⎠ .

The illustration of domain and interface geometry can be found in Fig. 9(a). Note that, the dark-shading region enclosed in 
the interface is the inner boundary of the domain �. We choose the following same solution u and the coefficient β as in 
[3]

u(x, y, z) =
⎧⎨
⎩

sin(2x) cos(2y)ez, (x, y, z) ∈ �−,(
16

(
(y−x)

3

)5 − 20
(

(y−x)
3

)3 + 5
(

(y−x)
3

))
log(x + y + 3) cos(z), (x, y, z) ∈ �+,

β(x, y, z) =
{

10
(
1 + 1

5 cos (2π(x + y)) sin (2π(x − y)) cos(z)
)
, (x, y, z) ∈ �−,

1, (x, y, z) ∈ �+.

The right-hand side functions can be obtained using Eqs. (1)-(3).
Again, the above analytic solution is obviously discontinuous across the interface so we have to follow the solution 

procedures discussed in the Remark to obtain the approximate network solution. First, we use a shallow network with 100
neurons and 752 training points (generated by DistMesh [30]) x� on the interface to train the function V (x) satisfying 
V (x�) = −�u�(x�). Once V is available (thus v is obtained), we solve Eqs (21)-(23) by applying the present cusp-capturing 
PINN with one-hidden-layer and 2460 training data points (MI = 801, MB = 907, and M� = 752) to train the solution 
w . After that, we obtain the network approximate solution u = v + w . Table 8 shows the relative L∞ and L2 errors for 
different number of neurons N used in the hidden layer. One can see that, using merely 25 neurons in the hidden layer 
(correspondingly 150 trainable parameters), the relative errors and training losses are of the magnitudes O (10−4) and 
O (10−7), respectively. The relative errors can be reduced to the magnitude O (10−6) when the number of neurons increases 
to 100. Fig. 9(b) shows the cross-sectional profile of the network solution on the hyperplane z = 0. As a result, the present 
14
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method is indeed applicable for solving elliptic interface problems in irregular domain with complex interface subject to 
nonzero solution jump condition.

5. Conclusion

We propose a cusp-capturing physics-informed neural network for solving the discontinuous-coefficient elliptic interface 
problems. By introducing a cusp-enforced level set function as an additional feature input to the network, the predicted 
solution by the network can retain the inherent properties of the solution which is continuous but the normal deriva-
tive has a jump discontinuity on the interface. The training procedure uses the LM-based optimizer to minimize the loss 
function comprising mean squared errors of the equation residual, the interface condition, and the boundary condition in 
the same spirit as the physics-informed neural networks. We conduct a series of numerical tests to show the accuracy of 
the present network, with particular emphasis on the number of neurons and training points, and the effectiveness of the 
cusp-capturing technique. A high-contrast coefficient interface problem is included in our numerical experiments, and the 
accuracy outperforms the one obtained in previous work. The present network is efficient in terms of network structure 
since one hidden layer with a moderate number of neurons and sufficiently enough training data points can achieve quite 
accurate predictions. The results are also comparable to traditional grid-based methods, such as the immersed interface 
method. Besides, if the solution is discontinuous across the interface, we can simply incorporate an additional supervised 
learning task for solution jump approximation into the present network without much difficulty. In the future, we shall 
apply the present network method to practical applications where traditional grid-based methods are difficult to implement 
and extend to the time-dependent discontinuous-coefficient interface problems. Meanwhile, using functions other than level 
sets to represent interfaces for handling the C0-interfaces and considering multiple interfaces is beyond the scope of this 
paper and is certainly worthy exploring in the future.
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