
Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486

0

A
d
W
a

b

c

A

K
P
S
L
S
E

1

a
e
c
c

c
m
t
s

h
R

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

shallow physics-informed neural network for solving partial
ifferential equations on static and evolving surfaces
ei-Fan Hu a,c,∗, Yi-Jun Shih b, Te-Sheng Lin b,c, Ming-Chih Lai b

Department of Mathematics, National Central University, Taoyuan 32001, Taiwan
Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
National Center for Theoretical Sciences, National Taiwan University, Taipei 106216, Taiwan

R T I C L E I N F O

eywords:
hysics-informed neural networks
urface partial differential equations
aplace–Beltrami operator
hallow neural network
volving surfaces

A B S T R A C T

In this paper, we introduce a shallow (one-hidden-layer) physics-informed neural network
(PINN) for solving partial differential equations on static and evolving surfaces. For the static
surface case, with the aid of a level set function, the surface normal and mean curvature
used in the surface differential expressions can be computed easily. So, instead of imposing
the normal extension constraints used in literature, we write the surface differential operators
in the form of traditional Cartesian differential operators and use them in the loss function
directly. We demonstrate a series of performance study for the present methodology by solving
Laplace–Beltrami equations and surface diffusion equations on complex static surfaces. With
just a moderate number of neurons used in the hidden layer, we are able to attain satisfactory
prediction results. We then extend the present methodology to solve the advection–diffusion
equation on an evolving surface with a given velocity. To track the deforming surface, we
additionally introduce a network, in which a prescribed hidden layer is employed to enforce
the topological structure of the surface and learn the homeomorphism between the surface and
the prescribed topology. The proposed network structure is designed to track the surface and
solve the equation simultaneously. Again, the numerical results show comparable accuracy as
the static cases. As an application, we simulate surfactant transportation on a droplet surface
under shear flow and obtain some physically plausible results.

. Introduction

Surface partial differential equations (PDEs) arise in a wide variety of scientific and engineering applications. These equations
re formulated in terms of differential operators acting on curved surfaces. Mathematically, they are examples of partial differential
quations on manifolds. Problems of interest include, for example, the modeling of surface-active agents [1], deforming vesicles [2],
ell motility and chemotaxis [3], bio-membranes [4], restoring a damaged pattern on surfaces [5], image processing [6], and
omputer graphics [7].

Solving PDEs on surfaces is certainly of major interest among the scientific computing community. The fundamental difficulty
omes from the numerical approximation of differential operators along a surface. This long-standing problem has been explored by
any researchers for decades. For instance, the surface finite element method [8,9] is designed specifically for PDEs on discretized

riangular surfaces. However, generating those triangulation nodes can be time-consuming, and the accuracy of the method is
ignificantly affected by the quality of triangulations. For geometric PDEs and high-order PDEs, spline-based methods [10,11] can

∗ Corresponding author at: Department of Mathematics, National Central University, Taoyuan 32001, Taiwan.
E-mail addresses: wfhu@math.ncu.edu.tw (W.-F. Hu), tslin@math.nctu.edu.tw (T.-S. Lin), mclai@math.nctu.edu.tw (M.-C. Lai).
045-7825/© 2023 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.cma.2023.116486
eceived 7 July 2023; Received in revised form 3 September 2023; Accepted 23 September 2023

https://www.elsevier.com/locate/cma
http://www.elsevier.com/locate/cma
mailto:wfhu@math.ncu.edu.tw
mailto:tslin@math.nctu.edu.tw
mailto:mclai@math.nctu.edu.tw
https://doi.org/10.1016/j.cma.2023.116486
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2023.116486&domain=pdf
https://doi.org/10.1016/j.cma.2023.116486

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.

l
a
e
g
c
f
o

s
s
s
a
c
a
t
g

be used to accurately discretize the partial differential equations on evolving surfaces. Using parametric representation is another
natural idea [12,13]. For instance, the solution along a smooth genus-zero surface can be represented by a spherical harmonics
expansion. However, it may suffer from the intrinsic singularities that are built into the PDE formulation (e.g., poles in spherical
coordinates) or in the boundary integral kernel involving Green’s function. Thus, it needs careful numerical treatments near the
singularities. A mesh-free approach called radial basis functions (RBFs) method [14,15] works by first representing the solution
as a linear combination of RBFs, and then substituting the approximation expression at some chosen collocation points into the
differential equation directly. As a result, a dense linear system of coefficients must be solved which is likely to be ill-conditioned.
In order to obtain a well-conditioned resultant matrix and achieve the desired accuracy, it is often necessary to manually adjust
the shape parameter appearing in a certain type of radial basis functions. Nonetheless, identifying the parameters to reach optimal
results remains an issue in the usage of radial basis functions.

On the other hand, embedding techniques aim to solve PDEs in a small band in the vicinity of a surface, examples including
evel set method [16], closest point method [17–19], or grid-based particle method [20,21]. The underlying surface PDE is
lternatively represented in Eulerian coordinates and thus surface derivatives are replaced by projections of derivatives in the
mbedding Euclidean space. In such a way, the difficulties such as parameterized or triangulated surfaces can be avoided. Despite the
eometrically flexible nature of these methods, practical implementation often requires the establishment of appropriate boundary
onditions at the band’s edges, which remains unclear. Besides, these methods involve the identification of surface projection points
or regular Cartesian grids, which adds extra computational effort and can be challenging, especially when dealing with highly
scillatory surfaces.

To the best of our knowledge, only a few works exist using machine learning for solving PDEs on surfaces. Following the same
pirit as those in embedding techniques, Fang et al. [22,23] adopt the physics-informed neural networks (PINNs) [24] framework to
olve the Laplace–Beltrami equation (stationary) and diffusion equation (time-dependent) on static surfaces. The neural network
olution is constrained to have zero normal derivatives at given training points along the surface. This restriction leads to an
pproximate normal extension solution in a narrow band of the surface, so the Laplace–Beltrami operator is replaced by the
onventional Laplace operator. As a consequence, the PINNs loss function penalizes the equation residual, together with normal
nd second-order derivatives. In such a way, the PDE information only comes from the training points given on the surface, and
hus differs significantly from those embedding techniques. Furthermore, it is completely mesh-free, unlike the aforementioned
rid-based embedding methods.

While the loss function seems to be legitimate, the numerical experiments shown in these works [22,23] have relative 𝐿2 errors
more than 1% even when deep neural networks are used. So, instead of using the above loss function, in this paper, we write the
surface differential operators in the form of traditional Cartesian differential operators and use them in the loss function directly.
Thus, we can encode the entire embedding PDE without imposing the normal extension constraint. Besides, we adopt a completely
shallow (one-hidden-layer) neural network under PINNs framework, so our model is easy to implement and train. As discussed
in [25–27], a shallow neural network can theoretically approximate smooth functions and their derivatives accurately. This is the
legitimate reason why it can help to solve PDEs in the first place. The shallow PINNs (or Ritz) method with augmented inputs
have been proven very effective for solving elliptic interface problems with jump discontinuities, see the authors’ recent papers
in [28–30].

Until very recently, Tang et al. [31] proposed a methodology that exactly shares the same spirit as ours, i.e., embedding the
solution into Eulerian coordinates and expressing surface differential operators by conventional Cartesian ones in the PINN loss.
However, their numerical experiments (for solving the stationary advection–diffusion equation) adopt the deep network architecture
(depth = 4 and width = 50), resulting in numerous parameters to be learned, to reach relative 𝐿2 error of magnitude 10−4 for some
smooth solutions. By contrast, we simply use shallow network structures with 60 neurons that is able to attain satisfactory prediction
results with errors around 10−6 for the Laplace–Beltrami equation and 10−5 for the surface diffusion equation. Furthermore, we have
extended our methodology to the evolving surface cases, whereas [31] only focuses on static surfaces.

The rest of the paper is organized as follows. In Section 2, we first describe a shallow PINNs model to solve stationary PDEs
(by taking Laplace–Beltrami equation as an example) on a static surface and perform a series of numerical accuracy tests and
comparisons. Then, we develop the network solver to solve time-dependent PDEs (by taking diffusion equation with a source term
as an example) and also demonstrate its capability for finding solutions on complex surfaces in Section 3. In Section 4, we extend
the present methodology to solve the advection–diffusion equation on a 2D evolving surface in R3. Some concluding remarks and
future works are given in Section 5.

2. Stationary PDEs on surfaces

Denoting a regular (or smooth) surface by 𝛤 embedded in Euclidean space R3, the considered PDEs take the general form

(𝑢) = 𝑓 on 𝛤 , (1)

where, for simplicity, 𝛤 is assumed to be a closed surface. The operator may consist of common differential terms related to the
surface geometry, such as surface gradient ∇𝑠𝑢, surface divergence ∇𝑠 ⋅ 𝐯 for some vector field 𝐯, or Laplace–Beltrami (or surface
Laplace) operator 𝛥𝑠𝑢. With a suitable surface parametric representation, these differential operators can be evaluated via first and
second fundamental forms of differential geometry [32]. For the case where the surface is not closed, some suitable boundary
conditions along 𝜕𝛤 must be given. Nevertheless, the boundary condition does not change the main ingredient of the present
2

methodology (see next subsection).

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.

s
i
v

H
a
m
a

t

As aforementioned, the differential operator can be computed using a local parametrization, say 𝑢 = 𝑢(𝜃, 𝜙), where 𝜃 and 𝜙
are surface parameters. However, numerical differentiations of (𝑢) using surface parametrization might cause severe numerical
instability. For instance, if the considered surface geometry is complicated (a stationary highly oscillatory surface case), or if the
discretized Lagrangian points are clustered in certain parts of the surface (a time-evolving surface case), this may lead to inaccurate
derivative calculations [33]. For the latter case, a reparametrization technique [33,34] is often required to redistribute those markers
on the surface to maintain the numerical accuracy and stability. Alternatively, one can utilize the arbitrary Lagrangian–Eulerian
formulation [35–37] to avoid node clustering.

Our goal is to develop a robust mesh-free numerical method for solving PDEs (1) based on a neural network learning technique.
To compute (𝑢), rather than using surface parametrization, here, we adopt an alternative way using conventional differential
operators. To this end, the solution 𝑢 defined on the surface is now regarded as an embedded function, 𝑢(𝑥, 𝑦, 𝑧), in the Eulerian
pace that satisfies 𝑢(𝑥, 𝑦, 𝑧) = 𝑢(𝜃, 𝜙) when (𝑥, 𝑦, 𝑧) ∈ 𝛤 . Although this assumption leads to the solution having one higher dimension
n the variable space (surface coordinates (𝜃, 𝜙) to Cartesian coordinates (𝑥, 𝑦, 𝑧)), the surface differential terms in can be rewritten
ia conventional differential operators in Eulerian coordinates. More precisely, at a given point 𝐱 = (𝑥, 𝑦, 𝑧) ∈ 𝛤 , we have

∇𝑠𝑢 = (𝐼 − 𝐧𝐧𝑇)∇𝑢,
∇𝑠 ⋅ 𝐯 = ∇ ⋅ 𝐯 − 𝐧𝑇 (∇𝐯)𝐧,
𝛥𝑠𝑢 = 𝛥𝑢 − 2𝐻𝜕𝑛𝑢 − 𝐧𝑇 (∇2𝑢)𝐧.

(2)

ere, 𝐧 = 𝐧(𝐱) is the unit outward normal vector on 𝛤 , 𝐻 = 𝐻(𝐱) is the mean curvature, 𝜕𝑛𝑢 = ∇𝑢 ⋅𝐧 denotes the normal derivative,
nd ∇2𝑢 is the Hessian matrix of 𝑢. The derivation of above identities can be found in Appendix. Note that, both normal vector and
ean curvature in the above formulas can be directly computed once the level set function representation 𝜓 of the surface 𝛤 is

vailable. That is, at 𝐱 ∈ 𝛤 (so the level set 𝜓(𝐱) = 0 represents 𝛤), the above two geometric quantities can be computed by

𝐧 =
∇𝜓

‖∇𝜓‖
and 2𝐻 = ∇ ⋅ 𝐧 =

tr(∇2𝜓) − 𝐧𝑇 (∇2𝜓)𝐧
‖∇𝜓‖

, (3)

where tr(⋅) gives the trace of a matrix and ‖ ⋅ ‖ denotes the standard Euclidean norm.
Throughout the rest of this section, we will only focus on the Laplace–Beltrami equation as

𝛥𝑠𝑢(𝐱) = 𝑓 (𝐱) on 𝛤 , (4)

where we deliberately put the variable 𝐱 to clarify that the differential equation is defined in Eulerian coordinates. In addition,
it is important to mention that, there exists infinitely many embedded functions 𝑢(𝐱) whose restriction on 𝛤 serves as a solution
to Eq. (4) (or more generally, Eq. (1)), so that such embedded solutions can be representable in a wide range of neural network
approximator, thanks to the expressive power of universal approximation theory [25,26].

2.1. Physics-informed learning machinery using shallow neural network approximation

With the expressive capabilities of neural networks [26], we hereby construct a simple feedforward, fully-connected, shallow
(one-hidden-layer) neural network solution 𝑢 as

𝑢 (𝐱) =
𝑁
∑

𝑗=1
𝛼𝑗𝜎(𝑊𝑗𝐱𝑇 + 𝑏𝑗). (5)

Here, 𝜎 is the activation function, and 𝑁 is the number of employed neurons in that hidden layer. The total number of learnable
(or trainable) parameters 𝑁𝑝 is the sum of the numbers of weights (denoted by 𝑊𝑗 ∈ R1×3, 𝛼𝑗 ∈ R) and biases (denoted by 𝑏𝑗 ∈ R).
Since only one hidden layer is employed, the total number of trainable parameters is 𝑁𝑝 = 5𝑁 . Notice that, the output layer in the
present network structure is assumed to be unbiased, so the network output can be concisely written in the form of a finite linear
combination of activation functions.

Let us describe the methodology of physics-informed learning machinery [24] for solving Eq. (4) as follows. With a given training
set {𝐱𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) ∈ 𝛤 }𝑀𝑖=1, the neural net parameters (weights and biases in Eq. (5)) are learned via minimizing the mean squared
error of the differential equation residual

Loss(𝐩) = 1
𝑀

𝑀
∑

𝑖=1

[

𝛥𝑠𝑢 (𝐱𝑖;𝐩) − 𝑓 (𝐱𝑖)
]2 ,

where 𝐩 is a vector collecting all trainable parameters (of dimension 𝑁𝑝) . Using the third identity in Eq. (2), it is natural to choose
he loss function as

Loss𝛥𝑠 (𝐩) =
1
𝑀

𝑀
∑

𝑖=1

[

𝛥𝑢 (𝐱𝑖) − 2𝐻(𝐱𝑖)𝜕𝑛𝑢 (𝐱𝑖) − 𝐧(𝐱𝑖)𝑇
(

∇2𝑢 (𝐱𝑖)
)

𝐧(𝐱𝑖) − 𝑓 (𝐱𝑖)
]2 , (6)

where we have dropped the notation 𝐩 in 𝑢 for succinct purpose. The first- and second-order partial derivatives of 𝑢 involved
in the above loss can be evaluated via auto-differentiation [38], or, derived explicitly through the network expression (5) thanks
to the simplicity of the shallow network structure. We remark that the explicit evaluations of partial derivatives can be done more
efficiently than the auto-differentiation since the latter requires multiple runs of backpropagation.
3

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.
Fig. 1. Shapes of ellipsoid and torus (top row), genus-2 torus and cheese-like (bottom row). The color code denotes the magnitude of mean curvature 𝐻 .

Here, we should point out that the following loss function is used in [23]

Loss𝛥(𝐩) =
1
𝑀

𝑀
∑

𝑖=1

[

𝛥𝑢 (𝐱𝑖) − 𝑓 (𝐱𝑖)
]2 + 1

𝑀

𝑀
∑

𝑖=1

[

𝜕𝑛𝑢 (𝐱𝑖)
]2 + 1

𝑀

𝑀
∑

𝑖=1

[

𝐧(𝐱𝑖)𝑇
(

∇2𝑢 (𝐱𝑖)
)

𝐧(𝐱𝑖)
]2 , (7)

which is inspired by the inequality

|𝛥𝑠𝑢 − 𝑓 | ≤ |𝛥𝑢 − 𝑓 | + |2𝐻||𝜕𝑛𝑢| + |𝐧𝑇 (∇2𝑢)𝐧|, (8)

that is also a direct result from the third identity in Eq. (2). One can see that their idea of designing loss𝛥 in Eq. (7) is to penalize
each term on the right-hand side of the above inequality. This will generally result in a normal extension solution (in a very narrow
region) since it is attempted to enforce 𝜕𝑛𝑢 = 0 on 𝛤 . Like our proposed Loss𝛥𝑠 in Eq. (6), second partial derivatives are still
required in Eq. (7). One favorable feature of Loss𝛥 is to avoid computing the local mean curvatures at training points which will
save some computational efforts. However, since the normal derivative term 𝜕𝑛𝑢 in the inequality (8) is multiplied by the factor
|2𝐻|, this will significantly influence the upper bound of the actual differential equation residual using loss𝛥 (7). In next subsection,
we will demonstrate that our proposed loss function (6) indeed outperforms the splitting residual loss (7) in the sense of higher
predictive accuracy regardless of the surface geometries. We also point out that since only one hidden layer with moderate number
of neurons employed in the present network, the computational complexity and learning workload can be significantly reduced
without sacrificing the accuracy.

2.2. Numerical results

Here, we use the established network model to perform a series of numerical tests for Laplace–Beltrami equation. We consider
four different surfaces 𝛤 which can be represented by the zero level sets of 𝜓 as follows.

• Ellipsoid : 𝜓(𝑥, 𝑦, 𝑧) = (𝑥∕1.5)2 + (𝑦)2 + (𝑧∕0.5)2 − 1
• Torus: 𝜓(𝑥, 𝑦, 𝑧) = (

√

𝑥2 + 𝑦2 − 1)2 + 𝑧2 − 1∕16
• Genus-2 torus: 𝜓(𝑥, 𝑦, 𝑧) =

[

(𝑥 + 1)𝑥2(𝑥 − 1) + 𝑦2
]2 + 𝑧2 − 0.01

• Cheese-like surface: 𝜓(𝑥, 𝑦, 𝑧) = (4𝑥2 − 1)2 + (4𝑦2 − 1)2 + (4𝑧2 − 1)2 + 16(𝑥2 + 𝑦2 − 1)2 + 16(𝑥2 + 𝑧2 − 1)2 + 16(𝑦2 + 𝑧2 − 1)2 − 16

As mentioned before, the normal vector and mean curvature used in the computation of Laplace–Beltrami operator 𝛥𝑠 can be exactly
obtained through symbolic differentiation in Eq. (3). The shapes of these surfaces and corresponding local mean curvatures are shown
in Fig. 1.

We should note that the solution to Laplace–Beltrami equation is unique up to an arbitrary additive constant. To assess the
accuracy of our method, the obtained network solution 𝑢 is shifted to have the same value of the exact solution at a given point.
4

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.

o
i

F
d
t
r
m

a
c
t
r
m
e

C
m

l
c
t
l
m
h

Table 1
The average relative 𝐿2 errors with different sizes of neurons 𝑁 in the hidden layer. For each case the number of training points is fixed
by 𝑀 = 400.
𝑁 Loss𝛥𝑠 (6), present work Loss𝛥 (7), proposed in [23]

ADAM L-BFGS LM ADAM L-BFGS LM

20 2.070E−04 9.500E−05 6.841E−06 7.148E−02 9.453E−02 9.774E−02
30 2.959E−04 1.009E−04 1.837E−06 5.199E−02 5.422E−02 4.390E−02
40 1.260E−04 9.376E−05 3.780E−07 4.300E−02 4.218E−02 3.304E−02

Throughout all numerical tests in this paper, we choose sigmoid as the activation function. We generate a set of collecting points
n 𝛤 via the usage of DistMesh package developed in [39] wherein level set function related to target surface is required as an
nput. We then randomly pick training points {𝐱𝑖} in that point cloud set. To train the network model, we adopt the Levenberg–

Marquardt (LM) method [40] (except the below discussion on the comparison between different popular optimizers) that can
effectively find the optimal parameters for losses of mean squared type. After the training process is finished, we measure the
accuracy of the solution using the test error instead of the training error. That is, we randomly choose 𝑀𝑡𝑒𝑠𝑡 testing points on 𝛤 by
computing the relative error in 𝐿2 norm as

‖𝑢 − 𝑢‖2
‖𝑢‖2

=

√

√

√

√

𝑀𝑡𝑒𝑠𝑡
∑

𝑖=1

(

𝑢 (𝐱𝑖) − 𝑢(𝐱𝑖)
)2
/

√

√

√

√

𝑀𝑡𝑒𝑠𝑡
∑

𝑖=1

(

𝑢(𝐱𝑖)
)2.

or each case, we set 𝑀𝑡𝑒𝑠𝑡 ∼ 104. Notice that we initialize the network parameters in LM method by the standard normal
istribution. It was found that the randomness in the initialization only leads to slightly different prediction results and nearly
he same computational training time for each experiment. For each test, we repeat the numerical runs five times so the test error
eported here is the averaged one. All trials are ran on an iMac equipped with an intel i7 CPU. We implement the proposed PINN
odel using MATLAB.

In the following, we aim to analyze the performance of our proposed method. We quantify the prediction accuracy through
series of virtual experiments, including the comparisons of loss functions and optimizers, and single and double precision

omputations. We also study the effects on the number of training points and the depth of network architecture. In the above tests,
he ellipsoidal surface is considered, along which the exact solution is chosen as 𝑢(𝑥, 𝑦, 𝑧) = sin(𝑥) cos(𝑦 − 𝑧), so the corresponding
ight-hand side function 𝑓 (𝑥, 𝑦, 𝑧) can be computed directly by substituting 𝑢 into Eq. (4). Furthermore, we also apply the present
ethod to a non-closed surface case (the boundary condition is taken into account) and other more complex surfaces described

arlier.

omparisons of loss functions and optimizers. First, we perform the accuracy comparison between our proposed model and existing
ethod in [23] (i.e., the usage of loss function (7)). We fix 𝑀 = 400 training points and train the model using several popular

optimizers, such as ADAM [41], L-BFGS [42], and LM method. The results are reported in Table 1, in which the relative 𝐿2 errors
are shown for 𝑁 = 20, 30, 40 neurons used in the hidden layer. From the left panel, one can see that the testing accuracy of the present
oss model (Loss𝛥𝑠) is quite satisfactory (at least 0.01% predictive accuracy) among all optimizers, showing a good approximation
apability to the solution for the network model. One can also see that only the results obtained by LM algorithm show convergence
endency with increasing 𝑁 . This is because the LM algorithm, a quadratic convergence method particularly designed for nonlinear
east squares problems, generally seeks a local minimum in a faster decaying rate than the other two methods. As a result, the local
inimum found by LM optimizer in general has smaller training loss, and thus achieves higher prediction accuracy. See the time
istory of training loss for these three optimizers in Fig. 2.

We also check the testing accuracy using the loss function Loss𝛥 in (7) proposed in [23], and show the results in the right panel
of Table 1. One can immediately see how significantly different those relative 𝐿2 errors are compared with the results in left panel
(10−2 versus 10−7 for the case of 𝑁 = 40 with LM optimizer). And all errors obtained by Loss𝛥 are apparently greater than 1% no
matter which optimizer is adopted. This result indicates that, the requirement 𝜕𝑛𝑢 = 0 at points along 𝛤 gives rise to a locally
normal extension solution (in a small neighborhood) which might be complicated, and thus the network model may require more
neurons or deeper network structure to be employed to have an accurate prediction. We further run a series of tests with various
exact solutions following the same setup in Table 1. It turns out that same tendency is observed for both models (not shown here).
When other complex surfaces are considered, our model is still able to achieve good predictive accuracy (see later in this subsection)
whereas the loss function seeking normal extension predicts much less accurate solution (these results are not shown here). Based
on this finding, we conclude that, with the full expression of differential operators in the loss function, the embedded solution can
be accurately expressed under the present shallow neural network.

Comparison of single and double precision computations. Table 2 reports an extensive study on the comparison between the single
and double precision computations. We vary the number of neurons in the hidden layer and evaluate the relative 𝐿2 error between
the exact and predicted solutions, terminal loss values, and CPU time (in seconds). In each run, the network model is trained up to
4000 steps, while the number of training points is fixed by 𝑀 = 400. The results show that for both floating-point representations,
given enough training points, the prediction accuracy increases with the number of neurons used.

When 𝑁 = 20, the loss value obtained using single precision reaches around 10−9, which is the limit of single precision
calculation. Further increasing the number 𝑁 does not reduce the loss so the error is stuck around 10−5. For double precision
5

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.

n
(
b
g
a

E
f
𝑁

w
p
1

Fig. 2. Time history of training Loss𝛥𝑠 with 𝑁 = 40 using different optimizers. Dash–dotted line: ADAM, dashed line: L-BFGS, solid line: LM. All training processes
use 𝑀 = 400 training points.

Table 2
The average relative 𝐿2 errors, loss values, and CPU time (in seconds) with different number of neurons 𝑁 in the hidden layer. For each case,
the number of training points is fixed by 𝑀 = 400 and the training procedure is terminated at 4000 steps.
(𝑁,𝑁𝑝) Double precision Single precision

Error Loss CPU time (s) Error Loss CPU time (s)

(5, 25) 6.524E−04 1.799E−05 27 6.967E−04 2.309E−05 26
(10, 50) 6.237E−05 7.285E−07 31 9.746E−05 6.320E−07 27
(20, 100) 6.841E−07 4.875E−11 36 1.349E−05 4.899E−09 30
(40, 200) 3.780E−07 1.429E−12 43 1.314E−05 2.300E−09 38
(80, 400) 2.082E−07 1.384E−13 67 1.398E−05 2.093E−09 49
(160, 800) 1.267E−07 1.622E−13 134 9.047E−06 2.179E−09 84

Table 3
The average relative 𝐿2 errors for the shallow
neural network with 𝑁 = 40 using different
number of training points 𝑀 .
𝑀 Error Loss

100 1.423E−04 3.427E−08
200 1.958E−06 9.978E−11
300 5.228E−07 4.777E−12
400 3.780E−07 1.429E−12
500 2.218E−07 1.942E−13

computation, increasing the network complexity beyond 𝑁 = 20 gives a low convergence rate. This is because we stop the training
process at 4000 iterations, and the loss may not reach its theoretical minimum. We observe that when the loss is small, its value
decays slowly during training, thus requires much more training steps to make the loss smaller.

Effect on the number of training points. Next, we investigate the effect on the number of training points. In Table 3, we deploy 𝑁 = 40
eurons in the hidden layer, and minimize the loss model with the number of training points ranging from 𝑀 = 100 to 𝑀 = 500
this can be roughly regarded as increasing the spatial resolution in traditional numerical methods). As can be seen, given a small
unch of training data 𝑀 = 100 only results in the accuracy around 10−4 with the loss value around 10−8. When the loss model is
iven by the enough information, namely, sufficient number of training points, the network is capable of reaching higher predictive
ccuracy around 10−7 with the loss around 10−12.

ffect on the depth of network architecture. We investigate the performance of multiple-hidden-layer network architectures. With
ixed number of training point 𝑀 = 400, we investigate the prediction results using the two-hidden-layer network, which employs

neurons per hidden layer, written as

𝑢 (𝐱) =
𝑁
∑

𝑗=1
𝛼𝑗𝜎(𝑊

[2]
𝑗 𝜎(𝑊 [1]𝐱𝑇 + 𝐛[1]) + 𝑏[2]𝑗),

here the weights 𝛼𝑗 ∈ R, 𝑊 [1] ∈ R𝑁×3 and 𝑊 [2]
𝑗 ∈ R1×𝑁 , the biases 𝐛[1] ∈ R𝑁 and 𝑏[2]𝑗 ∈ R. The total number of learnable

arameters is thus counted as 𝑁𝑝 = 𝑁2 + 6𝑁 . From Table 4 we can see that, for the number of learnable parameters 𝑁𝑝 =
−7
6

60, 520, 1840, the two-hidden-layer network attains equally good accuracy around 10 in comparison to the shallow one with

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.

n
e

A
b

Table 4
The average relative 𝐿2 errors for the two-hidden-
layer neural network. In each case the total number
of learnable parameters is counted by 𝑁𝑝 = 𝑁2+6𝑁
and the training data points is fixed by 𝑀 = 400.
(𝑁,𝑁𝑝) Error Loss

(10, 160) 2.347E−07 2.054E−12
(20, 520) 3.418E−07 2.617E−13
(40, 1840) 1.316E−07 1.170E−13
(80, 6880) 5.445E−08 2.582E−14

Table 5
The average relative 𝐿2 errors. For each case the
number of training points is fixed by 𝑀 = 400
and 𝑀𝑏 = 100.
(𝑁,𝑁𝑝) Error

(5, 25) 8.903E−04
(10, 50) 6.598E−05
(20, 100) 1.828E−06
(40, 200) 1.735E−07
(80, 400) 8.158E−08
(160, 800) 7.697E−08

𝑁𝑝 = 200, refer the case 𝑁 = 40 and 𝑀 = 400 in Table 3. When 𝑁 = 80 is used in each hidden layer, the prediction accuracy
reaches around 10−8 and the loss value decays as low as 10−14. However, this small improvement of accuracy requires a large
umber of parameters 𝑁𝑝 = 6880 needed to be trained. Thus, the usage of shallow neural network representation is readily able to
ncode smooth solutions, and the accuracy performance is equally well compared to the two-hidden-layer network.

pplication to a non-closed surface. When the considered surface is not closed, the underlying PDE must be subject to an additional
oundary condition along 𝜕𝛤 . Here, we consider the Dirichlet-type boundary condition 𝑢(𝐱) = 𝑢𝑏(𝐱) for 𝐱 ∈ 𝜕𝛤 , so, it is

straightforward to simultaneously enforce mean squared errors for both differential equation and boundary condition in a loss
function. That is, given training sets {𝐱𝑖 ∈ 𝛤 }𝑀𝑖=1 and {𝐱𝑗𝜕𝛤 ∈ 𝜕𝛤 }𝑀𝑏

𝑗=1, the loss function (6) is thus slightly modified with an additional
penalty term as

Loss𝛥𝑠 (𝐩) =
1
𝑀

𝑀
∑

𝑖=1

[

𝛥𝑢 (𝐱𝑖) − 2𝐻(𝐱𝑖)𝜕𝑛𝑢 (𝐱𝑖) − 𝐧(𝐱𝑖)𝑇
(

∇2𝑢 (𝐱𝑖)
)

𝐧(𝐱𝑖) − 𝑓 (𝐱𝑖)
]2

+ 1
𝑀𝑏

𝑀𝑏
∑

𝑗=1

[

𝑢 (𝐱𝑗𝜕𝛤) − 𝑢𝑏(𝐱
𝑗
𝜕𝛤)

]2
.

We run a test example whose solution is chosen as 𝑢(𝑥, 𝑦, 𝑧) = sin(𝑥) exp(cos(𝑦−𝑧)) and the hemi-ellipsoid 𝜓(𝑥, 𝑦, 𝑧) = (𝑥∕1.5)2 +(𝑦)2 +
(𝑧∕0.5)2 − 1 with 𝑧 > 0. In Table 5, with fixed number of training points 𝑀 = 400 and 𝑀𝑏 = 100, we show the prediction accuracy
with different number of neurons 𝑁 in the hidden layer. As seen, with the presence of boundary conditions, the proposed model
is still able to attain satisfactory accuracy. Again, given a sufficient number of training points 𝑀 and 𝑀𝑏, the prediction accuracy
increases as the number 𝑁 increases.

Numerical results of more complex surfaces. In the previous tests, we only focus on the surface geometry as simple as an ellipsoid (or
hemi-ellipsoid). Here, we present the numerical accuracy results for our proposed neural network using the loss function (6) with
more complex geometries such as torus, genus-2 surface, and cheese-like surface (see Fig. 1).

In Table 6 we show the average relative 𝐿2 errors and CPU time (in seconds) for those different surfaces. Again, we choose the
exact solution as 𝑢(𝑥, 𝑦, 𝑧) = sin(𝑥) exp(cos(𝑦 − 𝑧)); we fix 𝑀 = 400 training points which are randomly deployed along each surface
and train the model up to 500 steps. The number of neurons used in the hidden layer is varied from 𝑁 = 20, 30, 40, 50, 60. We see
that for all those different surface geometries, using just 𝑁 = 20 neurons (learnable parameters 𝑁𝑝 = 100) is sufficient to encode
the solutions with at least 0.01% predictive accuracy. Although the numerical convergence is not rigorously verified, the increase
of neurons generally leads to better accuracy for all these cases shown in the table. Besides, for a fixed 𝑁 , it is interesting to see
that the overall training procedures appear to have almost the same computational performance among the three different surfaces,
showing the robustness of the present model for handling the surface PDE on different surface geometries.

The predicted network solution 𝑢 (with 𝑁 = 60 and 𝑀 = 400) and the absolute error |𝑢 − 𝑢| for these surfaces are depicted
in Fig. 3. One can see that, regardless of the surface geometries, our designed network model is able to obtain equally accurate
prediction for all cases (the largest absolute error does not necessarily occur at the points with large mean curvatures). In addition,
these results are obtained by randomly sampled training points on the underlying surfaces, highlighting the robustness feature of
the mesh-free nature of the neural network model.
7

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.
Table 6
The average relative 𝐿2 errors and CPU time (in seconds) with different number of neurons 𝑁 in the hidden layer. For each case, the number
of training points is fixed by 𝑀 = 400 and the training procedure is terminated at 500 steps.
(𝑁,𝑁𝑝) Torus CPU time (s) Genus-2 CPU time (s) Cheese-like CPU time (s)

(20, 100) 2.774E−05 2.16 1.816E−06 2.25 1.522E−04 2.28
(30, 150) 5.568E−06 2.72 9.150E−07 2.78 2.897E−05 2.76
(40, 200) 2.181E−06 3.42 6.100E−07 3.40 1.018E−05 3.37
(50, 250) 1.708E−06 4.00 4.731E−07 4.08 7.176E−06 4.13
(60, 300) 1.139E−06 4.60 5.169E−07 4.55 5.617E−06 4.65

Fig. 3. Prediction solution 𝑢 and corresponding absolute error |𝑢 − 𝑢| with 𝑁 = 60 neurons employed. From left to right: torus, genus-2 surface, cheese-like
surface.

3. Time-dependent PDEs on static surfaces

In this section, we turn our attention to solve time-dependent PDEs on static surfaces. Given a regular and closed surface 𝛤 ,
along which we consider the PDEs of the general form

𝜕𝑡𝑢(𝐱, 𝑡) = (𝑢(𝐱, 𝑡)) + 𝑓 (𝐱, 𝑡) on 𝛤 , 𝑡 ∈ (0, 𝑇], (9)

where 𝑡 denotes the time variable and 𝑇 is the terminal time; 𝑓 is a source term defined on 𝛤 . Again (𝑢) may contain the surface
gradient ∇𝑠𝑢, surface diffusion 𝛥𝑠𝑢, or ∇𝑠 ⋅ 𝐯 for some known vector field 𝐯.

In this section, we shall concentrate on solving the surface diffusion equation (= 𝛥𝑠) as

𝜕𝑡𝑢(𝐱, 𝑡) = 𝛥𝑠𝑢(𝐱, 𝑡) + 𝑓 (𝐱, 𝑡) on 𝛤 , 𝑡 ∈ (0, 𝑇]. (10)

The above PDE is subjected to an initial condition

𝑢(𝐱, 𝑡 = 0) = 𝑢0(𝐱) on 𝛤 . (11)

To solve this time-dependent PDE, we follow the pioneering framework of physics-informed neural networks proposed in [24],
i.e., the above diffusion equation is solved by continuous-time or discrete-time model.

Continuous-time model. It is natural to encapsulate both spatial and time variables as the input of neural network function. Thus,
the approximate solution to Eq. (10) now can be written as

𝑢 (𝐱, 𝑡) =
𝑁
∑

𝛼𝑗𝜎(𝑊𝑗 (𝐱, 𝑡)𝑇 + 𝑏𝑗). (12)
8

𝑗=1

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.

d
m
a

Differing from the stationary case (see Eq. (5)) due to the time variable augmentation, the dimension of weights becomes 𝑊𝑗 ∈ R1×4,
so the total number of learnable parameters is increased as 𝑁𝑝 = 6𝑁 .

To learn those parameters, as in stationary case, we train the neural net model using the identities in Eq. (2) to compute
ifferential terms appeared in Eq. (10). Thus, it is straightforward to employ the physics-informed learning method to minimize the
ean squared residual for both differential Eq. (10) and initial condition (11). For given training points {(𝐱𝑖, 𝑡𝑖)|𝐱𝑖 ∈ 𝛤 , 𝑡𝑖 ∈ (0, 𝑇]}𝑀𝑇

𝑖=1
nd {𝐱𝑗0 ∈ 𝛤 }𝑀0

𝑗=1, the natural training loss is chosen as

Loss𝑐 (𝐩) =
1
𝑀𝑇

𝑀𝑇
∑

𝑖=1

[

𝜕𝑡𝑢 (𝐱𝑖, 𝑡𝑖) − 𝛥𝑠𝑢 (𝐱𝑖, 𝑡𝑖) − 𝑓 (𝐱𝑖, 𝑡𝑖)
]2 + 1

𝑀0

𝑀0
∑

𝑗=1

[

𝑢 (𝐱𝑗0, 0) − 𝑢0(𝐱
𝑗
0)
]2
, (13)

where 𝛥𝑠𝑢 (𝐱𝑖, 𝑡𝑖) = 𝛥𝑢 (𝐱𝑖, 𝑡𝑖) − 2𝐻(𝐱𝑖)𝜕𝑛𝑢 (𝐱𝑖, 𝑡𝑖) − 𝐧(𝐱𝑖)𝑇
(

∇2𝑢 (𝐱𝑖, 𝑡𝑖)
)

𝐧(𝐱𝑖).

Discrete-time model. In contrast to the continuous-time model, in discrete-time model, the PDE (10) is alternatively solved by a semi-
discretization scheme as in classical numerical methods [24]. That is, we obtain the numerical solution via the 𝑞-stage time-stepping
implicit Runge–Kutta (RK) scheme:

𝑢𝑛+𝑐𝑗 = 𝑢𝑛 + 𝛥𝑡
𝑞
∑

𝑘=1
𝑎𝑗𝑘(𝛥𝑠𝑢𝑛+𝑐𝑘 + 𝑓 𝑛+𝑐𝑘), 𝑗 = 1, 2,… , 𝑞, (14)

𝑢𝑛+1 = 𝑢𝑛 + 𝛥𝑡
𝑞
∑

𝑘=1
𝑏𝑘(𝛥𝑠𝑢𝑛+𝑐𝑘 + 𝑓 𝑛+𝑐𝑘), (15)

where 𝛥𝑡 is the time step size, 𝑢𝑛+𝑐𝑗 = 𝑢(𝐱, (𝑛 + 𝑐𝑗)𝛥𝑡) and 𝑓 𝑛+𝑐𝑗 = 𝑓 (𝐱, (𝑛 + 𝑐𝑗)𝛥𝑡) are the intermediate solution and source term
correspondingly, and 𝑢𝑛+1 = 𝑢(𝐱, (𝑛 + 1)𝛥𝑡) is the numerical solution at the next time level. Here we adopt Gauss–Legendre method
so the temporal discretization error of above 𝑞-stage Runge–Kutta scheme is 𝑂(𝛥𝑡2𝑞), where the parameters {𝑎𝑗𝑘, 𝑏𝑘, 𝑐𝑘} are given
from Butcher tableau [43]. By taking sufficiently large 𝑞, this high-order scheme allows us to obtain an accurate numerical solution
𝑢𝑛+1 even with large 𝛥𝑡. Meanwhile, the numerical stability can be retained due to the fully implicit expression in Eq. (14).

To obtain 𝑢𝑛+1, we need to learn those intermediate network solutions, 𝑢𝑛+𝑐𝑗 , again via physics-informed learning technique. We
proceed by placing a multi-output neural network 𝐮 (𝐱) = [𝑢𝑛+𝑐1 (𝐱), 𝑢𝑛+𝑐2 (𝐱),… , 𝑢

𝑛+𝑐𝑞
 (𝐱), 𝑢𝑛+1 (𝐱)]𝑇 and it can be compactly expressed

by

𝐮 (𝐱) = 𝑊 [2]𝜎(𝑊 [1]𝐱𝑇 + 𝐛[1]),

where 𝑊 [1] ∈ R𝑁×3 and 𝑊 [2] ∈ R(𝑞+1)×𝑁 are the weight matrices and 𝐛[1] ∈ R𝑁 is the bias (so all 𝑢𝑛+𝑐𝑗 and 𝑢𝑛+1 are learned in a
single network). In this network, there are 𝑁𝑝 = (5+ 𝑞)𝑁 parameters needed to be learned. The loss function is thereby designed to
simultaneously enforce all discretization equations (14) together with the updating step (15). That is, given a set of training points
{𝐱𝑖 ∈ 𝛤 }𝑀𝑖=1, we have

Loss𝑑 (𝐩) =
1
𝑀

𝑞
∑

𝑗=1

𝑀
∑

𝑖=1

[

𝑢
𝑛+𝑐𝑗
 (𝐱𝑖) − 𝑢𝑛(𝐱𝑖) − 𝛥𝑡

𝑞
∑

𝑘=1
𝑎𝑗𝑘(𝛥𝑠𝑢

𝑛+𝑐𝑘
 (𝐱𝑖) + 𝑓 𝑛+𝑐𝑘 (𝐱𝑖))

]2

+ 1
𝑀

𝑀
∑

𝑖=1

[

𝑢𝑛+1 (𝐱𝑖) − 𝑢𝑛(𝐱𝑖) − 𝛥𝑡
𝑞
∑

𝑘=1
𝑏𝑘(𝛥𝑠𝑢

𝑛+𝑐𝑘
 (𝐱𝑖) + 𝑓 𝑛+𝑐𝑘 (𝐱𝑖))

]2

.

(16)

After finishing the training of the above loss model, we use this prediction 𝑢𝑛+1 as the initial condition to advance to the next time
level 𝑢𝑛+2 by proceeding to the same training process. Eventually, we obtain the numerical solution at the target terminal time.

3.1. Numerical accuracy

We perform the capability of continuous- and discrete-time neural network model, corresponding to Loss𝑐 in (13) and Loss𝑑 in
(16), for encoding the diffusion equation on the cheese-like surface. We check the prediction accuracy by considering the exact
solution

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = sin(𝑥 + sin(𝑡)) exp(cos(𝑦 − 𝑧)),

so the source term 𝑓 can be obtained accordingly. We set the terminal time 𝑇 = 1. For continuous-time model we use 𝑀0 = 100
and 𝑀𝑇 = 800 spatial–temporal training points, in which the surface points 𝐱𝑖 are randomly sampled while temporal points 𝑡𝑖 are
chosen based on Latin Hypercube Sampling strategy [44]. In discrete-time model we set 𝑀 = 200 spatial training points and adopt
6-stage implicit Runge–Kutta scheme with time step size 𝛥𝑡 = 1 (so the network solution at terminal time 𝑇 = 1 is obtained under a
single time update). In both models we terminate the training procedure up to 500 steps. The average relative 𝐿2 errors and CPU
time (in seconds) at 𝑇 = 1 for the network models with various neurons of the hidden layer 𝑁 are shown in Table 7. Again, both
models can obtain accurate predictive results. Furthermore, as expected, the increase of the number of neurons generally leads to
better accuracy as well. It is apparent that the performance of discrete-time model is much more costly than the continuous-time
model. Despite the number of trainable parameters of discrete-time model is just a little bit larger than the one of continuous-time
model when the same number 𝑁 is used, the multi-output network employed in the discrete-time model results in a tremendous
workload in the computation of auto-differentiation and LM update step.
9

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.
Table 7
The average relative 𝐿2 errors and CPU time (in seconds) at 𝑇 = 1 for continuous-time and discrete-time model with various neurons of hidden
layer 𝑁 . In each test, we fix 𝑀𝑇 = 800 and 𝑀0 = 100 for the continuous-time model; 𝑀 = 200 and 𝛥𝑡 = 1 for the 6-stage RK discrete-time model.
Both models are ran up to 500 training steps.
(𝑁,𝑁𝑝) Continuous-time model CPU time (s) (𝑁,𝑁𝑝) Discrete-time model CPU time (s)

(20, 120) 1.400E−03 4.05 (20, 220) 6.448E−04 60
(30, 180) 1.975E−04 5.61 (30, 330) 5.013E−05 111
(40, 240) 1.390E−04 7.08 (40, 440) 1.627E−05 176
(50, 300) 5.984E−05 8.54 (50, 550) 7.920E−06 241
(60, 360) 3.661E−05 9.89 (60, 660) 6.446E−06 346

Fig. 4. The snapshots of solution distribution for heating up the cheese-like surface at different times. The color code ranging from 0 to 0.36 indicates the
magnitude of the solution.

3.2. A surface heating up application

We perform an application simulation by mimicking the process of heating up a surface. The initial condition is set to be zero
everywhere and the heating source is a time-independent Gaussian bump given by

𝑓 (𝑥, 𝑦, 𝑧) = exp(−((𝑥 + 1)2 + (𝑦 + 1)2 + (𝑧 − 1)2)),

so the majority of the source accumulates in the vicinity of the point (−1,−1, 1). The diffusion equation is solved using the discrete-
time model with the 4-stage RK scheme, in which we set the time step 𝛥𝑡 = 0.1 and compute the solution up to the terminal time
𝑇 = 1. We use 𝑀 = 500 training points and 𝑁 = 100 neurons. Since there is no analytical solution available in this case, we are
unable to measure the relative 𝐿2 error quantitatively. We simply train the network to get the loss value to the order of magnitude
10−8 which is roughly matched with the temporal discretization error (𝛥𝑡)8 = 10−8. The successive snapshots of time-evolutional
solution are displayed in Fig. 4. As we can see, near the source of Gaussian bump, the magnitude of prediction solution becomes
larger as time evolves. At the same time, the heat distribution becomes wider due to the diffusion mechanism in the PDE model.
Therefore, the predictive solution generated by our network model presents some visually plausible results.

4. PDEs on evolving surfaces

In this section, we extend the proposed methodology to solve PDEs on evolving surfaces. Here, the considered surface 𝛤 (𝑡) evolves
with a prescribed velocity field 𝐯(𝐱, 𝑡) so its configuration follows the evolutional equation

𝜕 𝐱 = 𝐯(𝐱(𝑡), 𝑡), 𝐱(𝑡) ∈ 𝛤 (𝑡), 𝑡 ∈ (0, 𝑇], (17)
10

𝑡

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.
together with an initial configuration 𝛤 (0) represented by 𝐱(𝑡 = 0) = 𝐱0. For simplicity, we assume that 𝛤 (𝑡) remains a regular surface
under the velocity field 𝐯.

Throughout this section, we consider the following advection–diffusion equation on the evolving surface 𝛤 (𝑡) as

𝜕𝑡𝑢 + 𝐯 ⋅ ∇𝑢 + (∇𝑠 ⋅ 𝐯)𝑢 = 𝛥𝑠𝑢 + 𝑓 on 𝛤 (𝑡), 𝑡 ∈ (0, 𝑇], (18)

where 𝜕𝑡𝑢+ 𝐯 ⋅∇𝑢 denotes the material derivative of 𝑢, and the term (∇𝑠 ⋅ 𝐯)𝑢 represents the surface stretching effect on the quantity
𝑢. The term 𝑓 = 𝑓 (𝐱, 𝑡) is again a given source term defined on 𝛤 (𝑡). For completeness, the above equation must be accompanied
by a given initial condition 𝑢(𝐱0, 𝑡 = 0) = 𝑢0(𝐱0) on 𝛤 (𝑡 = 0). One should note that the above Eq. (18) is popularly used in modeling
certain physical applications; for instance, the insoluble surfactant concentration along a droplet surface in fluid flows [34,45]. The
major challenge of solving Eq. (18) arises from the time-dependent computation of surface geometrical quantities such as mean
curvatures 𝐻(𝐱, 𝑡) and normal vectors along the evolving surface (which are involved in those conventional differential terms as
seen in Eq. (2)). We aim to solve the PDE system (17)–(18) under a unified continuous-time neural network framework, as stated
as follows.

4.1. Neural network solver for PDEs on evolving surfaces

To track this time evolving surface using neural network representation, we adopt the surface parametrization as

𝛤 (𝑡) = {𝐱(𝜃, 𝜙, 𝑡) ∈ R3
| (𝜃, 𝜙) ∈ [0, 𝜋] × [0, 2𝜋), 𝑡 ∈ [0, 𝑇]}.

The key observation is that a closed surface (with genus zero) is homeomorphic to a unit sphere S2 in three-dimensional space.
Therefore, there exists a continuous and invertible mapping between the surface 𝛤 (𝑡) and S2. We hereby propose a two-hidden-layer
neural network structure to represent the surface. We first map the input variables (𝜃, 𝜙) to the unit sphere S2 (as the output of the
first hidden layer), and then use a fully-connected neural network to learn the homeomorphism between S2 and the surface. More
precisely, let 𝑆2(𝜃, 𝜙) = (sin 𝜃 cos𝜙, sin 𝜃 sin𝜙, cos 𝜃), then the homeomorphic network can be written as

𝐱 (𝜃, 𝜙, 𝑡) = 𝑊 [2]𝜎(𝑊 [1](𝑆2(𝜃, 𝜙), 𝑡)𝑇 + 𝐛[1]), (19)

where the weight matrices 𝑊 [1] ∈ R𝑁×4 and 𝑊 [2] ∈ R3×𝑁 , and the bias 𝐛[1] ∈ R𝑁 (so the total number of training parameters
𝑁𝑝 = 8𝑁). We should emphasize the features of the above surface network representation: (i) There are no parameters needed to
be trained from the input layer to the first hidden layer, i.e., the output of the first hidden layer is directly computed through
the nonlinear map 𝑆2. Whereas, the remaining parameters of the network (𝑊 [1], 𝑊 [2], and 𝐛[1]) need to be trained. (ii) This
representation automatically fulfills 2𝜋-periodicity in 𝜙-direction while the pole conditions at 𝜃 = 0 and 𝜋 are taken care by the
parametrization of 𝑆2. (iii) When a genus 𝑔 surface is considered, following the same idea, we can adopt the mapping from the
parametric domain to a 𝑔-torus so that the homeomorphism can be learned using neural network representation.

Now, with the proper surface network representation (19), we proceed to solve the surface evolving equation (17). Given sets
of training points {(𝜃𝑖, 𝜙𝑖, 𝑡𝑖)|(𝜃𝑖, 𝜙𝑖) ∈ [0, 𝜋] × [0, 2𝜋), 𝑡𝑖 ∈ (0, 𝑇]}𝑀𝑇

𝑖=1 and {(𝜃𝑗0, 𝜙
𝑗
0) ∈ [0, 𝜋] × [0, 2𝜋)}𝑀0

𝑗=1, the surface configuration at any
instantaneous time is found by minimizing the continuous-time loss model as

Loss𝐱(𝐩) =
1
𝑀𝑇

𝑀𝑇
∑

𝑖=1

[

𝜕𝑡𝐱 (𝜃𝑖, 𝜙𝑖, 𝑡𝑖) − 𝐯(𝐱 (𝜃𝑖, 𝜙𝑖, 𝑡𝑖), 𝑡𝑖)
]2 + 1

𝑀0

𝑀0
∑

𝑗=1

[

𝐱 (𝜃𝑗0, 𝜙
𝑗
0, 0) − 𝐱0(𝜃

𝑗
0, 𝜙

𝑗
0)
]2
. (20)

Here, both (𝜃𝑖, 𝜙𝑖) and (𝜃𝑗0, 𝜙
𝑗
0) are chosen so that 𝑆2 acting on those points are randomly distributed on S2. This strategy shall

effectively avoid local cluster of sample points on 𝛤 (𝑡). After the termination of the training process, we use the network solution
𝐱 (𝜃, 𝜙, 𝑡) to build up the training sets {(𝐱𝑖, 𝑡𝑖)|𝐱𝑖 ≡ 𝐱 (𝜃𝑖, 𝜙𝑖, 𝑡𝑖) ∈ 𝛤 (𝑡𝑖)}𝑀𝑇

𝑖=1 and {𝐱𝑗0 ≡ 𝐱 (𝜃𝑗0, 𝜙
𝑗
0, 0) ∈ 𝛤 (0)}𝑀0

𝑗=1, and find the
normal vectors 𝐧(𝐱𝑖, 𝑡𝑖) and mean curvatures 𝐻(𝐱𝑖, 𝑡𝑖) via the first and second fundamental forms in differential geometry [32].
As a consequence, finding the solution to the surface PDE (18) is a straightforward application of the present method. Namely,
expressing the shallow neural network solution by Eq. (12), we minimize the loss function

Loss𝑢(𝐩) =
1
𝑀𝑇

𝑀𝑇
∑

𝑖=1

[

𝜕𝑡𝑢 (𝐱𝑖, 𝑡𝑖) + 𝐯(𝐱𝑖, 𝑡𝑖) ⋅ ∇𝑢(𝐱𝑖, 𝑡𝑖) + (∇𝑠 ⋅ 𝐯(𝐱𝑖, 𝑡𝑖))𝑢(𝐱𝑖, 𝑡𝑖) − 𝛥𝑠𝑢 (𝐱𝑖, 𝑡𝑖) − 𝑓 (𝐱𝑖, 𝑡𝑖)
]2

+ 1
𝑀0

𝑀0
∑

𝑗=1

[

𝑢 (𝐱𝑗0, 0) − 𝑢0(𝐱
𝑗
0)
]2
,

(21)

where

𝛥𝑠𝑢 (𝐱𝑖, 𝑡𝑖) = 𝛥𝑢 (𝐱𝑖, 𝑡𝑖) − 2𝐻(𝐱𝑖, 𝑡𝑖)𝜕𝑛𝑢 (𝐱𝑖, 𝑡𝑖) − 𝐧(𝐱𝑖, 𝑡𝑖)𝑇
(

∇2𝑢 (𝐱𝑖, 𝑡𝑖)
)

𝐧(𝐱𝑖, 𝑡𝑖),

and ∇𝑠 ⋅ 𝐯(𝐱𝑖, 𝑡𝑖) = ∇ ⋅ 𝐯(𝐱𝑖, 𝑡𝑖) − 𝐧(𝐱𝑖, 𝑡𝑖)𝑇∇𝐯(𝐱𝑖, 𝑡𝑖)𝐧(𝐱𝑖, 𝑡𝑖).
It is worth mentioning that in other Eulerian grid-based embedding methods [21,45], an operator splitting strategy is required

in order to solve the advection and diffusion parts separately. By contrast, the present method (21) deals with the surface PDE at
the instantaneous time 𝑡 = 𝑡𝑖 directly; thus, the implementation is simple and straightforward.

Since the surface configuration 𝐱 and the underlying solution 𝑢 change simultaneously as time proceeds, it is more practical
11

to obtain them in a time sequential manner [46,47], especially for longer time 𝑇 . In this way, we divide the time interval [0, 𝑇]

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.

h

𝑁
d
s
i
a
a
b

P
t
t
a
r
u
l
m
e

Table 8
The average relative 𝐿2 errors for the surface configuration 𝐱, normal vector 𝐧, mean curvature 𝐻 , and CPU time
(in seconds) at 𝑇 = 2. For each case, the number of training points is fixed by 𝑀 = 800 and 𝑀0 = 100 and the
training task is ran up to 500 steps. The total number of learnable parameters for the network expression (19)
is 𝑁𝑝 = 8𝑁 .

(𝑁,𝑁𝑝) ‖𝐱 − 𝐱‖2∕‖𝐱‖2 ‖𝐧 − 𝐧‖2∕‖𝐧‖2 ‖𝐻 −𝐻‖2∕‖𝐻‖2 CPU time (s)

(10, 80) 4.574E−04 3.317E−04 7.360E−04 98
(20, 160) 8.678E−05 3.305E−05 1.037E−04 122
(30, 240) 4.206E−06 1.980E−06 7.156E−06 148
(40, 320) 1.116E−06 1.892E−06 7.393E−06 181

into 𝑛 uniform subintervals as [0, 𝑇] = ∪𝑛𝑘=1[𝑇𝑘−1, 𝑇𝑘], and apply the above learning machinery to obtain the solutions of 𝐱 and 𝑢
in each time interval [𝑇𝑘−1, 𝑇𝑘] starting at 𝑘 = 1. We repeatedly use the loss functions Eqs. (20) and (21) by resuming the initial
data that is obtained from the trained results in the previous time interval. Unless otherwise stated, we use the notation 𝑀 (instead
of 𝑀𝑇) to denote the number of training points used in parametric domain (𝜃, 𝜙, 𝑡) ∈ [0, 𝜋] × [0, 2𝜋) × (𝑇𝑘−1, 𝑇𝑘], and 𝑀0 to denote
the number of training points used in the initial data at 𝑇𝑘−1. Here, we randomly choose 𝑀𝑡𝑒𝑠𝑡 = 100𝑀 test points and repeat the
numerical experiments five times, so the averaged relative 𝐿2 error is computed based on these five runs on different training points.
The numerical results are shown in the following subsections.

4.2. Numerical results

This example aims to demonstrate the capability and accuracy of the proposed method for solving the advection–diffusion
equation on a 2D evolving surface in R3. We consider the case of an oscillating ellipsoid [18,45] whose configuration is described
by

𝛤 (𝑡) =

{

(𝑥, 𝑦, 𝑧)
|

|

|

|

|

(

𝑥
1.5𝑎(𝑡)

)2
+ 𝑦2 +

(𝑧
0.5

)2
= 1

}

.

The associated velocity field is 𝐯 =
(

𝑎′(𝑡)
𝑎(𝑡) 𝑥, 0, 0

)

and we set 𝑎(𝑡) =
√

1 + 0.95 sin(𝜋𝑡). One should note that the above Cartesian
representation for 𝛤 (𝑡) can be easily rewritten as the parametric form in terms of (𝜃, 𝜙) using unit sphere representation 𝑆2 in
the previous subsection. The exact solution to the surface advection–diffusion Eq. (18) is again chosen as 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = sin(𝑥 +
sin(𝑡)) exp(cos(𝑦 − 𝑧)), and the source function 𝑓 can be obtained accordingly. We divide the time interval [0, 2] into 10 uniform
subintervals, and sequentially calculate both the neural network solutions 𝐱 and 𝑢 up to time 𝑇 = 2, so a total of 10 steps of
time integration are needed to reach the terminal time.

Predictive accuracy for tracking the surface. The surface evolutional differential equation (17) is solved using the loss model (20).
Given the number of training points 𝑀 = 800 and 𝑀0 = 100, we train the network model with different number of neurons in the
idden layer up to 500 training steps. Table 8 reports the relative 𝐿2 errors of the network predictive surface configuration 𝐱 , the

normal vector 𝐧 , the mean curvature 𝐻 , and the CPU time (in seconds) at 𝑇 = 2. It can be seen that the network solution (19)
can accurately predict not only the surface configuration, but also the normal vector and mean curvature at the test points. Those
relative 𝐿2 errors range from 10−4 to 10−6 using merely 10–40 neurons in the hidden layer. The history of training loss (20) for

= 40 is shown in Fig. 5. Recall that the time integration is processed sequentially in 10 temporal subintervals, so we use black
otted line to divide the loss history in each training task. In the first time interval, the trainable parameters are initialized by
tandard normal distribution, while in the subsequent time intervals we initialize those parameters by inheriting the ones obtained
n the previous training task. As can be seen, this strategy would somehow provide proper initialization for each training task. In
ddition, we depict the snapshots of the predictive surface configuration 𝐱 and mean curvature 𝐻 for 𝑁 = 40 in Fig. 6. We should
lso point out that the present method is mesh-free and the implementation is much easier in comparison with the traditional grid
ased methods [45].

redictive accuracy for solving the advection–diffusion equation on an evolving surface. The loss model (21) is used to find the solution
o the advection–diffusion equation (18). Again, using 𝑀 = 800 and 𝑀0 = 100 training points with 500 training steps, we first train
he network with 𝑁 = 40 neurons to predict 𝐱 , 𝐧 , and 𝐻 at the training points (i.e., at (𝜃𝑖, 𝜙𝑖, 𝑡𝑖), we set 𝐱𝑖 = 𝐱𝑖, 𝐧𝑖 = 𝐧(𝐱𝑖, 𝑡𝑖),
nd 𝐻 𝑖

 = 𝐻(𝐱𝑖, 𝑡𝑖)), and then use them as the inputs in the loss function (21). Table 9 shows that, simply using the shallow network
epresentation, our proposed solver can indeed achieve high accuracy predictions for different number of neurons 𝑁 = 10, 20, 30, 40
sed in the hidden layer. The trajectory of training loss (21) is depicted in Fig. 7. Again, we use black dotted line to divide the
oss history in each training task, and use the same strategy as in the previous experiment to initialize the trainable parameters. We
ust emphasize that the present method enjoys the advantage of being mesh-free, and thus can be easily implemented to find the
12

mbedded solution 𝑢.

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.
Fig. 5. The history of training loss (20) for 𝑁 = 40. Notice that the time integration is processed sequentially in 10 temporal subintervals, so we use black
dotted line to divide the loss history in each training task.

Fig. 6. The snapshots of the network solution 𝐱 with 𝑁 = 40 neurons at different times. The color code indicates the magnitude of the mean curvature 𝐻 .

Table 9
The average relative 𝐿2 errors and CPU time (in seconds) for the
solution 𝑢 at 𝑇 = 2. For each case, the number of training points
is fixed by 𝑀 = 800 and 𝑀𝑏 = 100 and the training task is ran
up to 500 steps. The total number of learnable parameters for
the network expression is 𝑁𝑝 = 6𝑁 .

(𝑁,𝑁𝑝) ‖𝑢 − 𝑢‖2∕‖𝑢‖2 CPU time (s)

(10, 60) 1.968E−03 25
(20, 120) 6.557E−04 43
(30, 180) 3.903E−05 60
(40, 240) 2.885E−05 78

4.3. Surfactant transport on a droplet surface under shear flow

As an application, we mimic the simulation of surfactant transport on a droplet surface [34,45] that has been extensively
studied using various numerical methods in literature. Here we neglect the fluid effect but simply apply the known shear flow
𝐯(𝑥, 𝑦, 𝑧, 𝑡) = (𝑧, 0, 0) to the droplet. The initial shape of the droplet surface is set as a unit sphere located at the origin, and will be
elongated by the shear flow along the 𝑥-direction. One can simply derive the exact surface configuration under this flow as

𝛤 (𝑡) =

{

(𝑥, 𝑦, 𝑧)
|

|

|

|

|

(𝑥 − 𝑡𝑧)2 + 𝑦2 + 𝑧2 = 1

}

.

The initial surfactant concentration 𝑢 is set to be uniform as 𝑢(𝑥, 𝑦, 𝑧, 0) = 1 while the source term is 𝑓 (𝑥, 𝑦, 𝑧, 𝑡) = 0. We construct the
network representation for 𝐱 and 𝑢 with 𝑁 = 50 and 𝑁 = 100 neurons respectively, and use 𝑀 = 1000 and 𝑀0 = 500 training
points in the loss models. The simulation is performed up to time 𝑇 = 3 sequentially by dividing the time interval [0, 3] into 10
uniform subintervals so overall 10 steps of time integration are needed to reach the terminal time. The snapshots for the droplet
configuration 𝐱 along with the surfactant concentration 𝑢 are shown in Fig. 8. As seen, due to the presence of the applied shear
flow, the surfactant is swept toward the both tips of the droplet surface as time evolves, leading to high concentration at the tips
while low concentration at the sides of the surface. This concentration distribution is commonly observed in the presence of shear
13

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.
Fig. 7. The history of training loss (21). Notice that the time integration is processed sequentially in 10 temporal subintervals, so we use black dotted line to
divide the loss history in each training task.

Fig. 8. The snapshots of the droplet surface configuration 𝐱 (𝑁 = 50) and surfactant concentration 𝑢 (𝑁 = 100) at different times. The color code indicates
the magnitude of 𝑢 .

flow even with the fluid effect [45]. We should point out that, the present mesh-free neural network method has no difficulty to
handle the scenario of large surface distortion (see 𝑡 = 3 in the figure), while in traditional numerical methods, the droplet surface
must be re-meshed from time to time to keep accurate and stable computations.

Since the given flow 𝐯 is incompressible, the droplet volume 𝑉 (𝑡) = 1
3 ∫𝛤 (𝑡) 𝐱 ⋅𝐧 d𝑆 should be conserved as a constant 𝑉 (0) = 4𝜋∕3.

Meanwhile, without the additional source (𝑓 = 0), the total surfactant mass 𝑚(𝑡) = ∫𝛤 (𝑡) 𝑢 d𝑆 is also conserved as its initial value
𝑚(0) = 4𝜋. Despite the present method does not guarantee the numerical conservation for these two quantities, we plot the evolutions
of the relative error for droplet volume |𝑉 (𝑡) − 𝑉 (0)|∕𝑉 (0) and total surfactant mass |𝑚(𝑡) − 𝑚(0)|∕𝑚(0) in Fig. 9. These two surface
integrations for 𝑉 (𝑡) and 𝑚(𝑡) are performed by Gauss–Legendre quadrature rule in 𝜃-direction and midpoint rule in 𝜙-direction. One
can see that both error plots are discontinuous at the endpoint of each time subinterval since the initial conditions for 𝐱 and 𝑢
are resumed in our loss models. The relative volume error reaches as low as approximately 10−6 even when the surface is highly
distorted at 𝑡 = 3, and the total surfactant mass error reaches around 10−5. This results outperform the ones obtained in [45].

5. Conclusion and future works

In this paper, a completely shallow physics-informed neural network is developed to solve Laplace–Beltrami and diffusion
equations on static surfaces, and advection–diffusion equation on evolving surfaces. Those surface PDEs are written in Eulerian
coordinates in which geometrical differentiations are calculated by conventional differential operators. For the static surface case,
with the aid of the level set function, the surface geometrical quantities such as the normal and mean curvature of the surface
14

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.
Fig. 9. The time plots of droplet volume error |𝑉 (𝑡) − 𝑉 (0)|∕𝑉 (0) (left), and total surfactant mass error |𝑚(𝑡) − 𝑚(0)|∕𝑚(0) (right).

can be computed directly and used in our surface differential expressions. The loss function hereby penalizes the equation residual
written in the form of Cartesian differential operators instead of imposing normal extension constraints used in literature. As for the
evolving surface, we additionally introduce a prescribed hidden layer to enforce the topological structure of the surface and use the
network to learn the homeomorphism between the surface and the prescribed topology. The proposed network structure is designed
to track the surface and solve the equation simultaneously. Since the present neural network uses only one hidden layer, the model
is easy to implement and train. Numerical results show high predictive accuracy using just a moderate number of neurons in the
hidden layer. We have to point out that, with different input sources or surface geometries, one needs to train the associated loss
model to find the network solution accordingly.

The traditional mesh-free method represents the solution by a linear combination of some chosen radial basis functions (RBFs; for
instance, Gaussian), and enforces the solution to satisfy the PDE directly at some chosen points. In fact, one can regard the present
shallow neural network solution as a linear combination of activation basis in which the weights and bias must be determined via
learning. It would be nice to make a fair performance comparison (including the computational cost and accuracy) between the
RBFs method and the present neural network method. But this is beyond the scope of the paper which we shall leave it as our
future work.

As known, PINN performs well when the solution is smooth. However, if the solution is highly oscillatory, one can implement
a multi-scale deep neural network structure developed in [48] to expedite the training process and achieve fast convergence over
different scales. On the other hand, if the solution has low regularity such as the one comes from corner singularity problems, to
the best of our knowledge, so far there is no effective remedy to improve the accuracy except putting more training points near
the corner singularity. Since the main themes of the paper are to compare the difference of two different loss functions used in
approximating the surface Laplace operator in PINNs framework and extend the developed methodology to evolving surface case,
the detailed investigation on how to obtain non-smooth solutions in PINNs for solving PDEs is beyond the scope of the paper.

The surfaces considered in this paper are defined by given level set representations. Within the current model implementation,
both the normal vector and mean curvature are required at each training point, and these can be readily computed through the level
set function. As a forthcoming extension, we shall consider PDEs on a point cloud of closed surface in which the level set function
is not available. One potential and feasible way to determine the mean curvature of a point cloud is to leverage methods of point
cloud parametrization [49,50]. For instance, a point cloud surface with genus-zero can be mapped onto a unit sphere via spherical
conformal parametrization [49]. Along this way, the mean curvature can be computed directly using the cotangent formula [51] over
a high-quality triangular mesh. Computing the normal vector and mean curvature at these training points is clearly a challenging
task as the surface evolves. We shall leave it for our future work.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgment

W.-F. Hu, T.-S. Lin and M.-C. Lai acknowledge the supports by National Science and Technology Council, Taiwan, under the
15

research grant 111-2115-M-008-009- MY3, 111-2628-M-A49-008-MY4 and 110-2115-M-A49-011-MY3, respectively.

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.

i
s

w

C

w

Appendix

Here, we present the derivations of the relation between surface differential operators and conventional differential operators
n Euclidean space. We begin by considering the surface gradient operator ∇𝑠, which describes the changing rate along a regular
urface (tangent to the surface) by removing the normal component in conventional gradient

∇𝑠𝑢 = ∇𝑢 − 𝜕𝑛𝑢𝐧 = (𝐼 − 𝐧𝐧𝑇)∇𝑢,

here both 𝐧 and ∇𝑢 are aligned as column vectors. On the other hand, the surface divergence operator reads

∇𝑠 ⋅ 𝐯 =
[

(𝐼 − 𝐧𝐧𝑇)∇
]𝑇 𝐯 = ∇𝑇 (𝐼 − 𝐧𝐧𝑇)𝐯 = ∇ ⋅ 𝐯 − 𝐧𝑇 (∇𝐯)𝐧.

ombining the above identities, we compute the Laplace–Beltrami operator by

𝛥𝑠𝑢 = ∇𝑠 ⋅ (∇𝑠𝑢) = ∇𝑠 ⋅ (∇𝑢 − 𝜕𝑛𝑢𝐧)
= ∇ ⋅ (∇𝑢 − 𝜕𝑛𝑢𝐧) − 𝐧𝑇

(

∇(∇𝑢 − 𝜕𝑛𝑢𝐧)
)

𝐧
= 𝛥𝑢 − (∇ ⋅ 𝐧)𝜕𝑛𝑢 − (∇𝜕𝑛𝑢) ⋅ 𝐧 − 𝐧𝑇 (∇2𝑢)𝐧 + 𝐧𝑇 (∇(𝜕𝑛𝑢𝐧))𝐧
= 𝛥𝑢 − 2𝐻𝜕𝑛𝑢 − 𝐧𝑇 (∇2𝑢)𝐧,

here we have used the fact that ∇ ⋅ 𝐧 = 2𝐻 and 𝐧𝑇∇𝐧 = 𝟎.

References

[1] W.-F. Hu, M.-C. Lai, C. Misbah, A coupled immersed boundary and immersed interface method for interfacial flows with soluble surfactant, Comput. &
Fluids 168 (2018) 201–215.

[2] G. Ayton, J. McWhirter, P. McMurty, G. Voth, Coupling field theory with continuum mechanics: A simulation of domain formation in giant unilamellar
vesicles, Biophys. J. 88 (2005) 3855–3869.

[3] C. Elliott, B. Stinner, C. Venkataraman, Modelling cell motility and chemotaxis with evolving surface finite elements, J. R. Soc. Interface (2012) 20120276.
[4] C. Elliott, B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements, J. Comput. Phys. 229 (2010)

6585–6612.
[5] M. Bertalmío, A. Bertozzi, G. Sapiro, Navier–Stokes, fluid dynamics, and image and video inpainting, in: Proceedings of IEEE-CVPR, 2001, pp. 355–362.
[6] P. Tang, F. Qiu, H. Zhang, Y. Yang, Phase separation patterns for diblock copolymers on spherical surfaces: A finite volume method, Phys. Rev. E 72

(2005) 016710.
[7] S. Auer, R. Westermann, A semi-Lagrangian closest point method for deforming surfaces, Comput. Graph. Forum 32 (2013) 207–214.
[8] G. Dziuk, C.M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal. 27 (2007) 262–292.
[9] G. Dziuk, C.M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (2013) 289–396.

[10] C. Zimmermann, D. Toshniwal, C. Landis, T. Hughes, K. Mandadapu, R. Sauer, An isogeometric finite element formulation for phase transitions on deforming
surfaces, Comput. Methods Appl. Mech. Engrg. 351 (2019) 441–477.

[11] N. Valizadeh, T. Rabczuk, Isogeometric analysis for phase-field models of geometric PDEs and high-order PDEs on stationary and evolving surfaces, Comput.
Methods Appl. Mech. Engrg. 351 (2019) 599–642.

[12] M. O’Neil, Second-kind integral equations for the Laplace–Beltrami problem on surfaces in three dimensions, Adv. Comput. Math. 44 (2018) 1385–1409.
[13] B. Gross, P.J. Atzberger, Spectral numerical exterior calculus methods for differential equations on radial manifolds, J. Sci. Comput. 76 (2018) 145–165.
[14] D. Álvarez, P. González-Rodríguez, M. Moscoso, A closed-form formula for the RBF-based approximation of the Laplace–Beltrami operator, J. Sci. Comput.

77 (2018) 1115–1132.
[15] H. Wendland, J. Künemund, Solving partial differential equations on (evolving) surfaces with radial basis functions, Adv. Comput. Math. 46 (64).
[16] M. Bertalmío, L.-T. Chen, S. Osher, Variational problems and partial differential equations on implicit surfaces, J. Comput. Phys. 174 (2001) 759–780.
[17] S.J. Ruuth, B. Merriman, A simple embedding method for solving partial differential equations on surfaces, J. Comput. Phys. 227 (2008) 1943–1961.
[18] A. Petras, S. Ruuth, PDEs on moving surfaces via the closest point method and a modified grid based particle method, J. Comput. Phys. 312 (2016)

139–156.
[19] A. Petras, L. Ling, C. Piret, S. Ruuth, A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces, J. Comput. Phys.

381 (2019) 146–161.
[20] S. Leung, H. Zhao, A grid based particle method for moving interface problems, J. Comput. Phys. 228 (2009) 2993–3024.
[21] S. Leung, J. Lowengrub, H. Zhao, A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order

geometrical motion, J. Comput. Phys. 230 (2011) 2540–2561.
[22] Z. Fang, J. Zhan, A physics-informed neural network framework for PDEs on 3D surfaces: Time independent problems, IEEE Access 8 (2019) 26328–26335.
[23] Z. Fang, J. Zhang, X. Yang, A physics-informed neural network framework for partial differential equations on 3d surfaces: time-dependent problems,

2021, arXiv:2103.13878.
[24] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[25] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signal Syst. 2 (4) (1989) 303–314.
[26] H. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Netw. 4 (1991) 251–257.
[27] H.N. Mhaskar, Neural networks for optimal approximation of smooth and analytic functions, Neural Comput. 8 (1996) 164–177.
[28] W.-F. Hu, T.-S. Lin, M.-C. Lai, A discontinuity capturing shallow neural network for elliptic interface problems, J. Comput. Phys. 469 (2022) 111576.
[29] M.-C. Lai, C.-C. Chang, W.-S. Lin, W.-F. Hu, T.-S. Lin, A shallow Ritz method for elliptic problems with singular sources, J. Comput. Phys. 469 (2022)

111547.
[30] Y.-H. Tseng, T.-S. Lin, W.-F. Hu, M.-C. Lai, A cusp-capturing PINN for elliptic interface problems, J. Comput. Phys. 491 (2023) 112359.
[31] Z. Tang, Z. Fu, S. Reutskiy, An extrinsic approach based on physics-informed neural networks for PDEs on surfaces, Mathematics 10 (2022) 2861.
[32] S.W. Walker, The Shapes of Things: a Practical Guide to Differential Geometry and the Shape Derivative, SIAM, 2015.
[33] S. Veerapaneni, A. Rahimian, G. Biros, D. Zorin, A fast algorithm for simulating vesicle flows in three dimensions, J. Comput. Phys. 230 (2011) 5610–5634.
[34] Y. Seol, S.-H. Hsu, M.-C. Lai, An immersed boundary method for simulating interfacial flows with insoluble surfactant in three dimensions, Commun.

Comput. Phys. 23 (2018) 640–664.
16

[35] A. Torres-Sánchez, D. Millán, M. Arroyo, Modelling fluid deformable surfaces with an emphasis on biological interfaces, J. Fluid Mech. 872 (2019) 218–271.

http://refhub.elsevier.com/S0045-7825(23)00610-2/sb1
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb1
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb1
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb2
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb2
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb2
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb3
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb4
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb4
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb4
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb5
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb6
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb6
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb6
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb7
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb8
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb9
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb10
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb10
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb10
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb11
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb11
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb11
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb12
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb13
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb14
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb14
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb14
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb15
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb16
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb17
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb18
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb18
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb18
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb19
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb19
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb19
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb20
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb21
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb21
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb21
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb22
http://arxiv.org/abs/2103.13878
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb24
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb24
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb24
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb25
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb26
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb27
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb28
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb29
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb29
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb29
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb30
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb31
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb32
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb33
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb34
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb34
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb34
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb35

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116486W.-F. Hu et al.
[36] A. Sahu, Y. Omar, R. Sauer, K. Mandadapu, Arbitrary Lagrangian-Eulerian finite element method for curved and deforming surfaces: I. General theory and
application to fluid interfaces, J. Comput. Phys. 407 (2020) 109253.

[37] S. Reuther, I. Nitschke, A. Voigt, A numerical approach for fluid deformable surfaces, J. Fluid Mech. 900 (2020) R8.
[38] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine learning: A survey, J. Mach. Learn. Res. 18 (2018) 1–43.
[39] P.-O. Persson, G. Strang, A simple mesh generator in MATALB, SIAM Rev. 46 (2004) 329–345.
[40] D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11 (1963) 431–441.
[41] B. Hanin, M. Sellke, Adam: A method for stochastic optimization, 2018, arXiv:1710.11278.
[42] D. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. 45 (1989) 503–528.
[43] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, 2009.
[44] M. Stein, Large sample properties of simulations using latin hypercube sampling, Technometrics 29 (1987) 143–151.
[45] S.-H. Hsu, J. Chu, M.-C. Lai, R. Tsai, A coupled grid based particle and implicit boundary integral method for two-phase flows with insoluble surfactant,

J. Comput. Phys. 395 (2019) 747–764.
[46] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, M. Mahoney, Characterizing possible failure modes in physics-informed neural networks, Adv. Neural Inf.

Process. Syst. 34 (2021) 26548–26560.
[47] M. Penwarden, A. Jagtap, S. Zhe, G. Karniadakis, R. Kirby, A unified scalable framework for causal sweeping strategies for Physics-Informed Neural

Networks (PINNs) and their temporal decompositions. arXiv:2302.14227.
[48] Z. Liu, W. Cai, Z.-Q.J. Xu, Multi-scale deep neural network (MscaleDNN) for solving Poisson–Boltzmann equation in complex domains, Commun. Comput.

Phys. 28 (5) (2020) 1970–2001.
[49] P.-T. Choi, K.T. Ho, L.M. Lui, Spherical conformal parameterization of genus-0 point clouds for meshing, SIAM J. Imaging Sci. 9 (2016) 1582–1618.
[50] P.-T. Choi, Y. Liu, L.M. Lui, Free-boundary conformal parameterization of point clouds, J. Sci. Comput. 90 (2022) 14.
[51] A. Bobenko, J. Sullivan, P. Schröder, G. Ziegler, Discrete Differential Geometry, Springer, 2008.
17

http://refhub.elsevier.com/S0045-7825(23)00610-2/sb36
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb36
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb36
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb37
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb38
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb39
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb40
http://arxiv.org/abs/1710.11278
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb42
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb43
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb44
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb45
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb45
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb45
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb46
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb46
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb46
https://arxiv.org/abs/2302.14227
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb48
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb48
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb48
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb49
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb50
http://refhub.elsevier.com/S0045-7825(23)00610-2/sb51

	A shallow physics-informed neural network for solving partial differential equations on static and evolving surfaces
	Introduction
	Stationary PDEs on surfaces
	Physics-informed learning machinery using shallow neural network approximation
	Numerical results

	Time-dependent PDEs on static surfaces
	Numerical accuracy
	A surface heating up application

	PDEs on evolving surfaces
	Neural network solver for PDEs on evolving surfaces
	Numerical results
	Surfactant transport on a droplet surface under shear flow

	Conclusion and future works
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix
	References

