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Abstract. A new and efficient neural-network and finite-difference hybrid method is
developed for solving Poisson equation in a regular domain with jump discontinuities
on embedded irregular interfaces. Since the solution has low regularity across the in-
terface, when applying finite difference discretization to this problem, an additional
treatment accounting for the jump discontinuities must be employed. Here, we aim to
elevate such an extra effort to ease our implementation by machine learning method-
ology. The key idea is to decompose the solution into singular and regular parts. The
neural network learning machinery incorporating the given jump conditions finds the
singular solution, while the standard five-point Laplacian discretization is used to ob-
tain the regular solution with associated boundary conditions. Regardless of the inter-
face geometry, these two tasks only require supervised learning for function approxi-
mation and a fast direct solver for Poisson equation, making the hybrid method easy
to implement and efficient. The two- and three-dimensional numerical results show
that the present hybrid method preserves second-order accuracy for the solution and
its derivatives, and it is comparable with the traditional immersed interface method in
the literature. As an application, we solve the Stokes equations with singular forces to
demonstrate the robustness of the present method.
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1 Introduction

In this paper, we aim to solve a d-dimensional (d= 2 or 3) elliptic interface problem de-
fined in a regular domain Ω⊂Rd, which is separated by an embedded interface Γ such
that the subdomains inside and outside the interface are denoted by Ω− and Ω+, respec-
tively. Along the interface Γ, there exists jump discontinuities that the solution must be
satisfied. With the associated boundary condition, the problem takes the form

∆u(x)= f (x), x∈Ω−∪Ω+, (1.1)
Ju(x)K=γ(x), J∂nu(x)K=ρ(x), x∈Γ, (1.2)

u(x)=ub(x), x∈∂Ω. (1.3)

Here, the jump J·K indicates the quantity approaching from Ω+ side minus the one from
Ω− side; the shorthand ∂nu represents the normal derivative ∇u·n in which n is the nor-
mal vector pointing from Ω− to Ω+. Notice that, here the underlying differential equa-
tion is subject to the Dirichlet-type boundary condition for illustration purpose, while
other types of boundary condition (Neumann or Robin) will not change the main ingre-
dients presented here. Since the Poisson equation is considered in Eq. (1.1), we simply
call the above problem as the Poisson interface problem hereafter.

As seen from Eqs. (1.1)-(1.3), the solution and its partial derivatives have jumps across
the interface. So, when applying the finite difference discretization to this problem, an
additional treatment accounting for those jump discontinuities must be employed at the
grid points near the interface. Over the past few decades, different discretization method-
ologies have been successfully developed to capture those jump conditions sharply or to
improve the overall numerical accuracy, such as the immersed interface method (IIM) [12,
13,16,18], ghost fluid method (GFM) [6,22], Voronoi interface method [7], to name a few.
Different approaches for solving interface problems such as the immersed finite element
method (IFEM) [8, 10] or other methods can be found in [20] and the references therein.

On the other hand, much attention has recently been paid to applying deep neural
networks (DNNs) to solve elliptic interface problems, rather than using traditional nu-
merical methods to solve such problems. Despite the success of the two mainstream
deep learning approaches (Physics-Informed Neural Networks (PINNs) [25, 26] and the
deep Ritz method [5]) in solving partial differential equations with smooth solutions,
learning methods based on these two frameworks for solving elliptic interface problems
with jump discontinuities remain to be improved. The main and intrinsic difficulty may
be attributed to the fact that the usual activation functions used in DNNs are generally
smooth; thus, DNN function approximators seem to be incapable of representing discon-
tinuous functions. To approximate such discontinuous solutions (or functions) and tackle
the elliptic interface problems, multiple independent networks need to be established and
linked with each other by imposing the jump conditions, see, e.g., piecewise DNNs [11],
interfaced neural networks [27], and deep unfitted Nitsche method [9]. The resulting
prediction errors in their test examples reach the magnitude O(10−3) to O(10−4) in rel-
ative L2 norm. Moreover, training these DNN models comes at the cost of having to
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train a separate neural network in each subdomain independently. Until very recently,
the authors of this paper proposed a Discontinuity Capturing Shallow Neural Network
(DCSNN) [14] that allows a single network to represent piecewise smooth functions via a
simple augmentation technique. The network is completely shallow (one hidden layer),
so the resulting number of trainable parameters is moderate (only a few hundred) and
attains prediction accuracy as low as O(10−7) in relative L2 norm for all tests in both 2D
and 3D elliptic interface problems. Note that the above neural network methods are all
completely mesh-free, but their convergence still requires further investigation.

In this work, we propose a novel hybrid method that combines neural network learn-
ing machinery and traditional finite difference methods to solve the Poisson interface
problem (1.1)-(1.3). The entire computation only comprises a supervised learning task
of function approximation and a fast direct solver of the Poisson equation, which can
be easily and directly implemented regardless of interface geometry. Here, we want to
emphasize that it is not our intention to replace traditional numerical methods such as
the immersed interface method (IIM) or immersed finite element method (IFEM) nor to
compete with them in every aspect. Instead, we want to provide an alternative (espe-
cially from the implementation aspect) to solve Poisson interface problems with non-
homogeneous jump conditions in which the advantages of using fast Poisson solver and
machine learning can be fully exploited. As known, the IIM and non-bodyfitted IFEM
need some complicated treatments to handle the non-homogeneous jump conditions
near the interface, especially in 3D case. However, in the present hybrid method, these
interface conditions can be easily incorporated into a function constructed by supervised
learning and thus regular finite difference scheme can be exploited. The numerical exper-
iments for 2D and 3D Poisson interface problems in Section 3 indicate that the proposed
method can achieve a similar accuracy with the IIM.

The rest of the paper is organized as follows. In Section 2, we present the method-
ology and list some features, including error analysis of the hybrid scheme. Numerical
results for the Poisson interface problems and Stokes equations with singular forces are
given in Sections 3 and 4, respectively, followed by some concluding remarks and future
works in Section 5.

2 Hybrid neural-network and finite-difference methodology

By taking advantage of the machine learning techniques, our goal is to design an easy-
to-implement fast solver for the Poisson interface problem (1.1)-(1.3). To this end, we
propose a novel hybrid method that exploits the advantages of neural network learn-
ing machinery and traditional finite difference method. As we can see from the jump
conditions in (1.2), the solution u is non-smooth across the interface. Thus, we start by
decomposing the solution into

u(x)=v(x)+w(x), (2.1)
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where v and w represent the singular (non-smooth) and regular (smooth) parts of u, re-
spectively. More precisely, we require w to be fairly smooth over the entire domain Ω,
so that the zero jumps JwK= J∂nwK= J∆wK=0 on the interface are all satisfied. Now the
singular solution v is responsible for having all the discontinuities across the interface;
hereby, we construct this discontinuous function by assuming

v(x)=

{
V(x), x∈Ω−,
0, x∈Ω+,

(2.2)

where V is a smooth function to be found. Using the above definition and plugging
the decomposition (2.1) into the jump conditions (1.2) and differential equation (1.1), the
unknown function V must satisfy the following constraints along the interface:

V(x)=−γ(x), ∂nV(x)=−ρ(x), ∆V(x)=−J f (x)K, x∈Γ. (2.3)

Note that this function is not unique, in the sense that there exist infinitely many functions
defined in the domain Ω that satisfy the restrictions (2.3). To find V , we leverage the
power of function expressibility of neural networks. Here, we simply employ a shallow
(one hidden layer) fully-connected feedforward neural network to approximate V , and
learn the function via the supervised learning model. Specifically, given a dataset with M
training data points {xi

Γ ∈Γ}M
i=1 and the target outputs γ(xi

Γ), ρ(xi
Γ) and J f (xi

Γ)K, we find
V(x) by minimizing the following mean squared error loss consisting of the residuals of
conditions in Eq. (2.3):

Loss(p)=
1
M

M

∑
i=1

[(
V(xi

Γ;p)+γ(xi
Γ)
)2

+
(

∂nV(xi
Γ;p)+ρ(xi

Γ)
)2

+
(

∆V(xi
Γ;p)+J f (xi

Γ)K
)2

]
,

(2.4)

where p collects all trainable parameters (weights and biases) in the network. To train
the above loss model, we adopted the Levenberg-Marquardt (LM) method [23], a full-
batch optimization algorithm which is particularly efficient for least squares losses. We
should also mention that the partial derivatives of the target function V(x) in the loss
function (2.4) can be computed easily by automatic differentiation [2].

Once V is available, we can obtain w by solving the following Poisson equation:

∆w(x)=∆u(x)−∆v(x)=

{
f (x)−∆V(x), x∈Ω−,
f (x), x∈Ω+,

(2.5)

w(x)=ub(x), x∈∂Ω. (2.6)

Notice that, using the last jump constraint for V in Eq. (2.3), one can immediately see that
the right-hand side function of (2.5) is continuous on the entire domain. Moreover, w
is accompanied by exactly the same boundary conditions as the solution u, since v van-
ishes in Ω+. As a result, w has sufficient regularity (recall the requirement JwK= J∂nwK=
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J∆wK=0) and satisfies the Poisson equation in the regular domain Ω that can be simply
and efficiently solved using the well-developed public software Fishpack [1] or any fast
Poisson solvers. Of course, other traditional numerical methods, such as finite volume or
finite element methods, can also be used to find the solution w. Additionally, we remark
that both the right-hand sides of Eq. (2.2) and the Poisson equation (2.5) involve the cat-
egorization of x in Ω− or Ω+, which can be easily done with the assistance of a level set
function for which the zero level set represents the interface Γ.

Let us summarize the proposed hybrid neural-network and finite-difference method
for solving the Poisson interface problem (1.1)-(1.3) as follows:

Step 1. With a given training dataset and a sufficient number of neurons (or trainable
parameters) used in the network, find the neural network function V by minimizing the
loss function (2.4) using the LM optimizer. Compute V at the finite difference discretiza-
tion grid points in Ω− and then obtain the singular part of the solution, v, at those grid
points using Eq. (2.2).

Step 2. Evaluate ∆V at the grid points in Ω−, and solve the Poisson equation (2.5) by
discretizing the Laplace operator using the standard five-point Laplacian and applying a
fast direct solver to obtain the regular part of the solution, w, at those gird points.

Step 3. Recover the numerical solution u=v+w at the gird points.

We conclude this section by introducing several features of the proposed method as
follows:

1. One can immediately deduce that the source of numerical error comes from the net-
work approximation (optimization and network approximation error) and the finite
difference approximation (local truncation error). The solution accuracy clearly de-
pends on these two approximations.

2. The right-hand side function of the Poisson equation for w (see Eq. (2.5)) is continu-
ous, but, in general, has discontinuities in its derivatives across the interface. Under
the finite difference discretization in Step 2, we have JwK= J∂nwK= J∆wK=0 on the
interface. So the local truncation error for grid points right adjacent to the inter-
face (irregular points) is O(h) with mesh size h, while the one for other grid points
(regular points) is O(h2). Since the number of irregular points is one dimension
lower than the number of regular points used in the problem, this O(h) truncation
error on an interior set of relative small size does not affect the overall second-order
accuracy. (For 1D case, this can be immediately seen by writing the solution with
the discrete Green’s function (scaled by h) so the O(h) local truncation error would
make an O(h2) contribution to the global error.) To prove this, Beale and Layton [4]
first write this localized O(h) truncation error at irregular points as the discrete
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divergence of a function which is only O(h2) in magnitude, and then perform a
maximum norm estimate for a discrete elliptic problem with a nonhomogeneous
term of divergence form. They are able to prove the solution global error is O(h2)
and its gradient error is O(h2 log(1/h)) in maximum norm. The present numerical
evidence indeed shows that the overall accuracy for solving w is second-order.

3. With only one-time training, the obtained network function V is defined in a con-
tinuous sense so that it can be used in Step 2 for any grid resolutions.

4. The advantage of traditional grid-based methods is that the boundary conditions
are exactly satisfied. The present hybrid method shares the same advantage thanks
to the design of Eq. (2.2). In contrast, most modern deep learning approaches either
adopt a penalty term in the loss function (e.g., PINNs [25] and DCSNN [14]) or
introduce an energy functional to enforce the boundary condition (e.g., shallow
Ritz method [15] and deep Nitsche method [21]), leading to an inevitable prediction
error along the domain boundary.

5. The proposed hybrid algorithm is easy to implement and efficient. It comprises a
supervised learning task (for V) and a fast direct Poisson solver (for w), and there
are already many well-developed and efficient packages for both tasks. We should
also point out that the regular part solver is not limited to finite difference method
nor the five-point Laplacian discretization. Finite volume, finite element, or spectral
methods can also be used to find the solution w.

6. The present method can be applied to any domain that has available fast solvers,
such as a two-dimensional disk, a three-dimensional sphere, higher dimensional
cube with periodic boundary conditions.

7. It is straightforward to implement the present method when multiple embedded
interfaces are considered.

3 Numerical results

In this section, we check the accuracy of the proposed method by performing two nu-
merical tests, including solving two- and three-dimensional Poisson interface problems.
In each test, the neural net function V is simply represented via a shallow network with
a sigmoid activation function, in which only a single hidden layer is employed. Thanks
to the shallow network structure, it only needs to train a moderate amount of parameters
(a few hundred parameters used throughout all numerical examples), so learning this
network function is efficient, for example, it can be done in seconds on iMac (2021). Since
all the computational domains considered in the following problems are regular (square
in 2D and cube in 3D), to solve the regular part w, we set up a uniform Cartesian grid
layout with the same mesh size h in each spatial direction.
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Example 1. We start by solving a two-dimensional Poisson interface problem and com-
pare the results with the ones obtained by the 2D IIM [16]. The problem is defined in
the square domain Ω = [−1,1]2 in which the embedded interface is an ellipse given by
Γ : (x/0.8)2+(y/0.2)2=1. The exact solution is chosen as

ue(x,y)=

{
exp(x)cos(y), if (x,y)∈Ω−,
exp(x2)cos(y), if (x,y)∈Ω+,

so the corresponding right-hand side f (x,y), and the jump information γ(x,y), ρ(x,y)
and J f (x,y)K used in the loss function can be calculated accordingly. In this example,
the network for V(x,y) is equipped with 40 neurons in the hidden layer and is trained
using 200 randomly sampled training points on the interface Γ. We finish the training
process when the stopping condition Loss(p)<10−12 or the maximum iteration number
(epoch=1000) is met.

In the left panel of Fig. 1, we report the mesh refinement study for maximum norm
error ∥u−ue∥∞ as a function of mesh size h, where u denotes the numerical solution.
One can see that the results obtained by the present hybrid method (solid blue line with
circular markers) and IIM (solid red line with triangular markers) are almost equally well,
and both achieve a second-order convergence rate. We then use the computed solution to
find ∇u=(∂xu,∂yu) simply by applying standard central difference for the regular part
w and automatic differentiation for the singular part v. As can be seen in the right panel
of Fig. 1, the gradient of the numerical solution attains a second-order convergence too.

As discussed in the previous section, the induced numerical error comes from both
neural network approximation and finite difference approximation. Although not shown
here, the final loss value here is about 10−13 ∼10−14, which leads to the predictive accu-
racy of the target function V and its Laplacian are of magnitude 10−6∼10−7. Thus, we can
conclude that the error is mainly dominated by the second-order finite difference approx-
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Figure 1: Mesh refinement results for the 2D Poisson interface problem in Example 1. Left: Comparison of
maximum norm errors of u between the present hybrid method and 2D IIM [16]. Right: Maximum norm error
of the gradient ∇u=(∂xu,∂yu).
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imation error when h2≳10−6. To verify our error estimation, we have run more refining
numerical tests with h2 <10−6. As expected, the resulting error cannot be reduced when
refining the mesh width h with higher resolutions (not shown here).

Example 2. Because of the mesh-free nature of the neural network, the proposed method
is robust to handle complicated interface geometries in which one only has to input the
interface description (such as interface parametric form and normal vector) in imple-
menting supervised learning for the singular part solution. We test the problem where
the interface is of super-ellipse shape (x/

√
0.7)4+(y/

√
0.1)4=1, and choose the same an-

alytic solution ue and follow the same setups as in Example 1. In the left panel of Fig. 2,
we depict the numerical solution u with the mesh size h=1/160; as one can see that the
discontinuity is indeed captured sharply across the interface. In the right panel we report
the mesh refinement result for the numerical solution and its gradient. As anticipated,
the maximum norm errors converge with second-order accuracy.
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Figure 2: Left: The numerical solution u obtained by the present hybrid method with the mesh size h=1/160.
Right: Maximum norm errors of the numerical solution u and its gradient ∇u=(∂xu,∂yu).

Example 3. To showcase the reliability of the hybrid method, we present an exam-
ple in the scenario that the exact solution is unavailable. We again embed an ellipse Γ
with parametric form (x(s),y(s))=(

√
0.7coss,

√
0.1sins), s∈ [0,2π) in the square domain

Ω=[−1,1]2. Specifically, we choose the right-hand side function of the Poisson interface
problem as

f (x,y)=

{
exp(xsiny), if (x,y)∈Ω−,
exp(ycosx), if (x,y)∈Ω+.

Along the domain boundary ∂Ω, we set the Dirichlet boundary condition u(x,y) = 0;
along the interface Γ, we choose the jump condition JuK(s)=γ(s)=sins, J∂nuK(s)=ρ(s)=
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Figure 3: Left: The numerical solution u obtained by the present hybrid method with the mesh size h=1/320.
Right: Maximum norm errors of the numerical solution u and its gradient ∇u=(∂xu,∂yu).

coss, and the jump J f K(s) can be accordingly obtained from the above given function.
The singular part solution is trained using 150 neurons in one hidden layer with 300
randomly sampled training points on the interface Γ.

We need to point out that, since the exact solution is not available in this test, we
measure the L∞ error by the successive error ∥uh−uh/2∥∞, where uh denotes the solution
with the grid size h. We depict the numerical solution u in the left panel of Fig. 3 with
the finest resolution h = 1/320 in this test. In the right panel we show the maximum
norm errors for u and its gradient. Again, all the quantities converge with second-order
accuracy.

Example 4. We proceed to consider the three-dimensional Poisson interface problem,
in which the interface is an ellipsoid Γ : (x/0.7)2+(y/0.5)2+(z/0.3)2 =1, embedded in a
cube Ω=[−1,1]3. The exact solution is given by

ue(x,y,z)=

{
exp(x+y+z), if (x,y,z)∈Ω−,
sin(x)sin(y)sin(z), if (x,y,z)∈Ω+.

Again, one can obtain f , γ, ρ, and J f K accordingly. We use the same shallow network
structure as in the previous example, i.e., we set 40 neurons in one hidden layer and 200
training points on the interface Γ to learn V(x,y,z). Fig. 4 shows the mesh refinement
results for the present method (solid blue line with circular markers) and 3D IIM solver
developed in [12] (solid red line with triangular markers), as well as the maximum norm
errors for the numerical gradient. Similar to the 2D case, one can clearly see that the
results of the present hybrid method and IIM are almost identical, and a second-order
accuracy is achieved for both the numerical solution and its gradient. It is important to
point out that, the implementation for learning V and solving w in 3D problems is indeed
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Figure 4: Mesh refinement results for the 3D Poisson interface problem in Example 2. Left: Comparison of
maximum norm errors of u between the present hybrid method and 3D IIM [12]. Right: Maximum norm error
of the gradient ∇u=(∂xu,∂yu,∂zu).

straightforward as in 2D. By contrast, calculating the extra correction terms (incorporat-
ing all jump information) in the IIM implementation can be quite tedious in 3D problems,
especially when the interface geometry is complex.

4 Application: 2D Stokes equations with singular forces

In this section, we apply the proposed method to solve the two-dimensional Stokes equa-
tions with singular forces on an interface Γ, which result from the immersed boundary
formulation [24] of fluid-structure interaction problems. The governing equations are
written the same as in [16]:

−∇p(x)+µ∆u(x)+
∫

Γ
F(s)δ(x−X(s)) ds+g(x)=0, x∈Ω, (4.1)

∇·u(x)=0, x∈Ω, (4.2)
u(x)=ub(x), x∈∂Ω, (4.3)

where u=(u1,u2) denotes the fluid velocity, p is the pressure, and µ is the constant vis-
cosity. There are two different forces acting to the fluid; namely, the external force field
g (might be discontinuous) to the fluid domain Ω, and the singular force represented by
the interfacial force F in terms of delta function formulation on Γ. Here, the notation X(s)
represents the configuration of the interface Γ with the arc-length parameter s. (Notice
that, the delta function in Eq. (4.1) is two-dimensional but the integration is over the one-
dimensional interface which leaves the integral term has one-dimensional singularity.)
Furthermore, the interfacial force F(s) can be written as a sum of the tangential (τ) and
normal (n) components as F=Fττ+Fnn. Instead of using the delta function formulation,
one can rewrite Eqs. (4.1)-(4.3) into the following Stokes equations with jump conditions
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across the interface (see the reference in [19]):

−∇p(x)+µ∆u(x)+g(x)=0, x∈Ω−∪Ω+, (4.4)
∇·u(x)=0, x∈Ω−∪Ω+, (4.5)

u(x)=ub(x), x∈∂Ω, (4.6)
Jp(X(s))K=Fn(s), Ju(X(s))K=0, J∂nu(X(s))K=−Fτ(s)τ(s)/µ, X(s)∈Γ. (4.7)

To solve the above Stokes equations by the present methodology given in Section 2, fol-
lowing the implementation in [19], we firstly apply the divergence operator to Eq. (4.4)
and use the divergence-free condition (4.5) to obtain the pressure Poisson equation as

∆p(x)=∇·g(x), x∈Ω−∪Ω+, (4.8)

Jp(X(s))K=Fn(s), J∂n p(X(s))K=
∂Fτ

∂s
+Jg(X(s))K·n(s), X(s)∈Γ. (4.9)

One can immediately see that an extra normal derivative jump condition of the pressure
is needed since now the equation (4.8) involves second-order derivatives rather than the
first-order derivatives in Eq. (4.4). For completeness, we list the derivation of the jump
conditions in Eq. (4.9) in Appendix, in which the proof is slightly different from the one
given in [19]. Once the pressure is found, the velocity can be obtained by solving

∆u(x)=
1
µ
(∇p(x)−g(x)), x∈Ω−∪Ω+, (4.10)

Ju(X(s))K=0, J∂nu(X(s))K=−Fτ(s)τ(s)/µ, X(s)∈Γ, (4.11)
u(x)=ub(x), x∈∂Ω. (4.12)

One can immediately see that these are Poisson interface problems so the present method
can be applied directly.

Example. For the numerical test, we use the example as in [16]. We consider a square
domain Ω=[−2,2]2 and the interface is simply a unit circle with the center located at the
origin: Γ={X(s)=(coss,sins)|s∈ [0,2π)}. The interfacial force comprises both tangential
(τ(s) = X′(s)) and normal (n(s) = X(s)) directions as F(s) = 2sin(3s)τ(s)−cos3(s)n(s).
Here, we set µ=1, and the exact velocity written in polar coordinates is chosen as

u1(r,θ)=

{ 1
8 r2cos(2θ)+ 1

16 r4cos(4θ)− 1
4 r4cos(2θ), if r<1,

− 1
8 r−2cos(2θ)+ 5

16 r−4cos(4θ)− 1
4 r−2cos(4θ), if r≥1,

u2(r,θ)=

{
− 1

8 r2sin(2θ)+ 1
16 r4sin(4θ)+ 1

4 r4sin(2θ), if r<1,
1
8 r−2sin(2θ)+ 5

16 r−4sin(4θ)− 1
4 r−2sin(4θ), if r≥1,
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while the exact pressure written in Cartesian coordinates (x= rcos(θ), y= rsin(θ)) is

p(x,y)=

{
x3+cos(πx)cos(πy), if r<1,
cos(πx)cos(πy), if r≥1.

Substituting the above velocity u=(u1,u2) and pressure p into Eq. (4.4), one can obtain
the corresponding discontinuous external force g.

We establish a three-output neural network, V=(Vu1 ,Vu2 ,Vp), to learn the target func-
tions simultaneously. Consequently, the loss function now consists all the jump residuals
for u and p. Notice that, one requires the jump information of the right-hand side of
Eq. (4.10), 1

µ (J∇pK−JgK); the latter is given directly and the former can be obtained by
using the identity J∇pK=∂sJpKτ+J∂n pKn that links to the given quantities using Eq. (4.9).
In the present test, we use a one-hidden-layer network that consists 50 neurons in the hid-
den layer. We use 200 randomly distributed sampling points and train the model using
the LM optimizer.

Once the singular parts are obtained, we use fast Poisson solver to find the regular
parts. Inside Ω, the fluid variables are defined at usual staggered grid layout with uni-
form mesh width h. Namely, the velocity components u1 and u2 are correspondingly
defined at the cell edges

(xi−1/2,yj)=(−2+(i−1)h,−2+(j−1/2)h), (xi,yj−1/2)=(−2+(i−1/2)h,−2+(j−1)h),

while the pressure p is defined at the cell center

(xi−1/2,yj−1/2)=(−2+(i−1/2)h,−2+(j−1/2)h).

We should point out that, for testing purpose, the pressure boundary condition is chosen
to be the Neumann type (which is commonly used in projection method for the pressure
increment in Navier-Stokes flows [3]). After the numerical solution for the regular part of
pressure is obtained, we compute ∇p at the cell edges (which coincides with the location
of u) by applying standard central difference for the regular part and auto differentiation
for the singular part.

The resulting errors for all fluid variables are shown in the top panel of Fig. 5. As
expected, the accuracy obtained by the present hybrid method is comparable with the
ones by IIM [16], and roughly achieves second-order convergence in maximum norm
error. In the bottom panel, we can also see that the numerical errors of ∇·u and ∇p are
around second-order as well.

5 Conclusion and future work

In this paper, we propose a new class of numerical methods to solve an elliptic interface
problem whose solution and derivatives are known to have jump discontinuities across
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Figure 5: Mesh refinement results for 2D Stokes equations with singular forces. Top: Comparison results
between the present hybrid method and 2D IIM [16]. Bottom: Maximum norm errors of ∇·u and ∇p.

an interface. The crucial idea is to decompose the solution into singular (non-smooth)
and regular (smooth) parts. The singular part is formed by a neural network represen-
tation found by using supervised learning machinery that incorporates all given jump
information into the loss function. The regular part, however, is a solution to the Poisson
equation, which can be obtained efficiently by several well-developed numerical meth-
ods, such as the fast direct solver based on finite difference discretization. Therefore, it
is simple to implement our proposed method, and it is straightforward to handle multi-
ple interfaces or high-dimensional problems. The numerical experiments for 2D and 3D
Poisson interface problems show that the proposed neural-network and finite-difference
hybrid method can achieve second-order accuracy for the solution and its derivatives.
Although all illustrated examples consider a single embedded interface only, it is straight-
forward to implement the hybrid method with multiple interfaces. As an application, we
use the present methodology to solve 2D Stokes equations with singular forces. Again,
the numerical result shows that all the fluid variables and their derivatives have second-
order convergence in maximum norm error as well.

The present hybrid method readily serves as a fast solver for Poisson interface prob-
lems involved in the projection step of Navier-Stokes flow problems. Our future work
aims to extend the present methodology for solving variable-coefficient elliptic interface
problems in regular or even irregular domains.
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Appendix

In this appendix, we present the derivation of the pressure jump condition in Eq. (4.9).
Let us recall that the domain Ω⊂Rd, is separated by an embedded interface Γ such that
the subdomains inside and outside the interface are denoted by Ω− and Ω+, respectively.
And the shorthand ∂n represents the normal derivative of a quantity where n is the unit
outward normal vector pointing from Ω− to Ω+. By taking the divergence operator to
Eq. (4.1) and using the divergence-free condition (4.2), we obtain the pressure Poisson
equation as

∆p(x)=∇·
∫

Γ
F(s)δ(x−X(s)) ds+∇·g(x).

Since the right-hand side of the above equation involves taking the divergence operator
on the Dirac delta function and discontinuous function g, we should regard them in
the sense of distributions. In other words, the above equation should be represented as
⟨∆p,ϕ⟩=⟨p,∆ϕ⟩, for all test functions ϕ∈C∞

0 (Ω). So in the following derivations, the test
function ϕ and its normal derivative ∂nϕ will be vanished on the outside boundary ∂Ω+.
Applying the derivative properties of the Dirac delta function, we have

⟨∆p,ϕ⟩=
∫

Ω
∇·

∫
Γ

F(s)δ(x−X(s)) dsϕ(x) dx+⟨∇·g,ϕ⟩

=−
∫

Γ
F(s)·∇ϕ(X(s)) ds−⟨g,∇ϕ⟩ (by definition of derivative distributions)

=−
∫

Γ
(Fττ+Fnn)·∇ϕ ds−

∫
Ω+

g·∇ϕ dx−
∫

Ω−
g·∇ϕ dx

=−
∫

Γ
(Fττ+Fnn)·∇ϕ ds+

∫
Ω+

(∇·g)ϕ dx+
∫

Γ
(g+ ·n)ϕ ds

+
∫

Ω−
(∇·g)ϕ dx−

∫
Γ
(g− ·n)ϕ ds

(by applying Green’s first identity to Ω± separately)

=
∫

Γ

∂Fτ

∂s
ϕ ds−

∫
Γ

Fn ∂nϕ ds+
∫

Ω−∪Ω+
(∇·g)ϕ dx+

∫
Γ
(JgK·n)ϕ ds, (A.1)
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where the first term in the last equation is obtained using integration by parts. Mean-
while,

⟨p,∆ϕ⟩=
∫

Ω+
p∆ϕ dx+

∫
Ω−

p∆ϕ dx

=−
∫

Ω+
∇p·∇ϕ dx−

∫
Γ

p+∂nϕ ds−
∫

Ω−
∇p·∇ϕ dx+

∫
Γ

p−∂nϕ ds

=−
∫

Ω+
∇p·∇ϕ dx−

∫
Ω−

∇p·∇ϕ dx−
∫

Γ
JpK∂nϕ ds

=
∫

Ω+
∆pϕ dx+

∫
Γ

∂n p+ϕ ds+
∫

Ω−
∆pϕ dx−

∫
Γ

∂n p−ϕ ds−
∫

Γ
JpK∂nϕ ds

=
∫

Ω+
(∇·g)ϕ dx+

∫
Ω−

(∇·g)ϕ dx+
∫

Γ
J∂n pKϕ ds−

∫
Γ
JpK∂nϕ ds

=
∫

Ω−∪Ω+
(∇·g)ϕ dx+

∫
Γ
J∂n pKϕ ds−

∫
Γ
JpK∂nϕ ds. (A.2)

By equating Eqs. (A.1) and (A.2), one can immediately obtain the jump conditions

JpK=Fn, J∂n pK=
∂Fτ

∂s
+JgK·n.
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