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We consider a two-dimensional (2-D) model of an autophoretic particle. Beyond a certain
emission/absorption rate (characterized by a dimensionless Péclet number, Pe) the particle
is known to undergo a bifurcation from a non-motile to a motile state, with different
trajectories, going from a straight to a chaotic motion by increasing Pe. From the full
model, we derive a reduced closed model which involves only two time-dependent
complex amplitudes C1(t) and C2(t) corresponding to the first two Fourier modes of
the solute concentration field. It consists of two coupled nonlinear ordinary differential
equations for C1 and C2 and presents several advantages: (i) the straight and circular
motions can be handled fully analytically; (ii) complex motions such as chaos can be
analysed numerically very efficiently in comparison with the numerically expensive full
model involving partial differential equations; (iii) the reduced model has a universal form
dictated only by symmetries (meaning that the form of the equations does not depend
on a given phoretic model); (iv) the model can be extended to higher Fourier modes. The
derivation method is exemplified for a 2-D model, for simplicity, but can easily be extended
to three dimensions, not only for the presently selected phoretic model, but also for any
model in which chemical activity triggers locomotion. A typical example can be found, for
example, in the field of cell motility involving acto-myosin kinetics. This strategy offers
an interesting way to cope with swimmers on the basis of ordinary differential equations,
allowing for analytical tractability and efficient numerical treatment.

Key words: micro-organism dynamics, swimming/flying, active matter

1. Introduction

Phoretic particles (rigid particles or drops) have recently been attracting an increased
interest theoretically, numerically and experimentally (Michelin, Lauga & Bartolo 2013;
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Schmitt & Stark 2013; Izri et al. 2014; Michelin & Lauga 2014; Jin, Krüger & Maass 2017;
Hu et al. 2019; Morozov & Michelin 2019a,b; Izzet et al. 2020; Morozov 2020; Chen et al.
2021; Hokmabad et al. 2021). In its simplest version, the model consists of a particle that
emits or absorbs (with an emission/absorption rate A) a solute which diffuses, with bulk
diffusion constant D, and is advected by the suspending fluid. The interaction between the
solute and the particle can be shown (Michelin & Lauga 2014) to result in a tangential
flow along the particle, in the form of (in the frame moving with particle) V = M∇sc,
where V is the velocity, c the solute concentration, ∇s is the gradient along the particle
surface, and M is a mobility factor involving fluid viscosity and the interaction potential
between the solute and the particle. This problem can be characterized by a Péclet number
Pe = AMa/D2 where a is the particle radius. The solute concentration c(r, t) (where r is a
position in space and t is time) and velocity V (r, t) obey the advection–diffusion and the
Stokes equations. It has been shown analytically, from a linear stability analysis, both in
two dimensions (Hu et al. 2019) and three dimensions (Michelin et al. 2013) that if Pe ≥
Pe1 (where Pe1 is a critical number), the particle undergoes a bifurcation from a non-motile
state (swimming velocity V0 = 0) into a motile state (V0 /= 0). A linear stability analysis
only informs us of the instability onset from one state to another, but is not sufficient
to describe how the velocity behaves with Pe, where a nonlinear analysis is needed.
Numerical simulations (Michelin et al. 2013; Hu et al. 2019) seemed consistent with the
fact that V0 is well represented by V0 ∼ ±(Pe − Pe1)

1/2 in the vicinity of the bifurcation
point; the solution V0 = 0 always exists, and is stable for Pe < Pe1 and becomes unstable
for Pe > Pe1, in favour of two stable branches of solutions V0 ∼ ±(Pe − Pe1)

1/2. This
is a classical pitchfork bifurcation (see the Conclusion for the occurrence of a singular
pitchfork bifurcation). Numerical simulations in two dimensions (Hu et al. 2019) also
showed that by increasing Pe further the straight moving solution becomes unstable in
favour of various states (meandering, circular and chaotic solutions). Simulations in three
dimensions under an axisymmetric constraint (imposing to the particle to move along
a line) also reported (Morozov & Michelin 2019a) on chaotic solutions (the particle
goes back and forth in a chaotic manner). Relaxing the axisymmetric constraint in three
dimensions also revealed, among other motion, meandering and chaotic motion in the
form of a persistent random walk (Hu et al. 2022). The transition from a non-motile to
a motile state, as well as irregular motion (apparently chaotic) has also been reported
experimentally (Izri et al. 2014; Jin et al. 2017; Izzet et al. 2020; Hokmabad et al. 2021),
and in some numerical simulations (Chen et al. 2021). The transition from a non-motile
to a motile state also takes place in the presence of a Marangoni stress (Izri et al. 2014;
Morozov & Michelin 2019a). In a completely different context, that of cell motility driven
by acto-myosin, rich dynamics (transition from a motile to a non-motile state, Hopf
bifurcation, etc.) have also been reported when the activity of the cell (represented by
myosin contractility) exceeds a certain critical value (Hawkins et al. 2011; Callan-Jones
et al. 2016; Farutin et al. 2019).

The above non-trivial behaviours have been obtained in most cases by numerical
simulations of model equations involving diffusion and advection with a moving boundary.
It is thus highly desirable to see whether or not these features can be translated into a
more universal language, since we expect the form of the reduced model equations not
to depend on a specific phoretic model. One way is to look for a reductive perturbative
scheme that allows one to extract equations from the full model, which are prototypical
simplified equations (their form does not depend on the considered swimmer model).
By starting from the phoretic model described above, we will extract, by following a
nonlinear perturbative scheme, two coupled (weakly nonlinear) equations for the time
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Phoretic swimmer

evolution of the complex amplitudes of the first two Fourier modes, while the spatial
dependence can be handled analytically. These equations will enable us to analyse, besides
the first (primary) bifurcation (transition from a motile to a non-motile state), a secondary
bifurcation corresponding to a transition from straight to circular trajectories. We will
also exemplify its power in capturing irregular motion. In the same spirit, Li (2022) has
extracted a reduced model from the same phoretic model, by considering only the first
harmonic. This calculation could account only for the transition from a motionless state
to a straight motion, in the form of a pitchfork bifurcation. In that paper, a finite size was
adopted, as done here, in order to avoid divergence of concentration field. Restricting the
reduced model to the first harmonic cannot account for complex motions (e.g. circular
trajectory and chaos). We will see that including the first and second harmonics will
capture these complex features, but also provides quantitative agreement with the full
simulation. It will be seen that including the second harmonic to the desired order of
expansion is far from being trivial, and this requires several mathematical subtleties.

We will exemplify the method for a two-dimensional (2-D) model (for simplicity), but
the technique should work perfectly well in three dimensions. In our calculation, we will
also see that the method can be readily adapted to other phoretic models (for example by
taking into account a consumption term, or having different boundary conditions). Indeed
most of our calculations do not rely on the explicit form of the evolution equations for the
concentration field, highlighting the general feasibility of the approach. It is only when the
explicit expressions of the coefficients are derived that the explicit form of the operator
(and its eigenfunctions) is used. In the case where eigenfunctions cannot be obtained
analytically for another swimming problem, they can always be tabulated as integrals,
but the reduced model (in terms of the first two Fourier modes) will keep the same form.
This will be discussed in more detail in the main text.

2. Problem formulation

Our starting point is a simple phoretic model in two dimensions. Figure 1 shows
the geometry of the considered system. In two dimensions we will see that the
concentration field diverges at ∞, this is why the domain for the concentration field
is taken to be finite having extent r = R (see figure 1). Another possibility to obtain
a steady-state concentration field is to introduce chemical consumption proportional
to the local concentration. This additional effect results in steady-state solutions that
show asymptotically an exponential decay at large distances from the particle, where
the characteristic length scale of the decaying field is given by a competition of the
diffusion and chemical consumption processes. Setting the finite size of the domain for
the concentration field, while keeping the flow domain infinite, can thus be seen as a
qualitative approximation of the consumption model in an infinite domain, where the
exponential decay is replaced by a sharp external boundary. Here we prefer to use the
finite domain for the concentration field because this boundary condition allows us to
complete all calculations symbolically. The concentration field in the consumption model
can only be expressed in terms of cylindrical Bessel functions, which would oblige us to
use numerical solutions to obtain the coefficients of the reduced model equations.

We first recall the problem formulation (Michelin et al. 2013; Michelin & Lauga 2014).
The concentration field c(r, t) subject to an advection–diffusion equation outside the
particle

∂tc(r, t) = D∇2c(r, t)− ∇ · [c(r, t)V (r, t)], (2.1)
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Fluid

Fluid + concentration

Fluid

R
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a

Figure 1. The particle has radius a, and the fluid as well as the concentration fields are defined between the
particle periphery r = a and external boundary r = R.

where the advection velocity field V (r, t) in the comoving frame is obtained by solving
the Stokes equations in the fluid outside the particle

−∇p + η�V = 0, ∇ · V = 0, (2.2a,b)

where p is the pressure field and η is the fluid viscosity. Here the 2-D position vector
r is measured relative to the particle centre and D is the diffusion coefficient. We use
polar coordinates (r, φ), centred at the particle position in the following derivation. The
boundary conditions for the concentration field read

∂rc(r, t)|r=a = −A/D, c(r, t)|r=R = 0, (2.3a,b)

where a is the particle size and R is the system size. The flow velocity satisfies the
following boundary conditions:

V (r, t)|r=∞ = −V 0(t), V (r, t)|r=a = M∇sc(r, t)|r=a, (2.4a,b)

where V 0(t) is the swimming speed of the particle (undetermined for the moment), ∇s

is the surface gradient operator and M is the particle mobility. The system is closed by
requiring the net force acting on the particle to be zero, which allows one to compute the
swimming velocity V0(t).

We will use the following dimensionalization. We use a as the unit of length, a2/D as
the unit of time, aA/D as the unit of concentration and ηD/a2 as the unit of pressure. The
set of equations reduce to (by keeping the same symbols for concentration, velocity and
pressure)

∂tc(r, t) = ∇2c(r, t)− ∇ · [c(r, t)V (r, t)], (2.5)

−∇p +�V = 0, ∇ · V = 0, (2.6a,b)

∂rc(r, t)|r=1 = −1, c(r, t)|r=R = 0, (2.7a,b)

V (r, t)|r=∞ = −V 0(t), V (r, t)|r=1 = Pe∇sc(r, t)|r=1. (2.8a,b)

The remaining two non-dimensional numbers are Pe = AMa/D2 (Péclet number) and
system size R/a, denoted as R.
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Phoretic swimmer

It is conventional to express the fluid velocity in terms of the stream function ψ :

Vr(r, t) = ∂φψ(r, t)
r

, Vφ(r, t) = −∂rψ(r, t). (2.9a,b)

The stream function is related to the concentration distribution along the particle boundary
by the boundary condition (2.4a,b), as explained below.

3. Expansion in Fourier harmonics

Following the previous works (Michelin et al. 2013; Hu et al. 2019), the concentration field
and the stream function are expanded in Fourier harmonics of the polar angle φ:

c(r, t) =
∞∑

l=−∞
cl(r, t) eilφ, ψ(r, t) =

∞∑
l=−∞

ψl(r, t) eilφ, (3.1a,b)

where we have cl(r) = c−l(r)∗ and ψl(r) = ψ−l(r)∗ as requirements for c and ψ to be
real. We first determine the stream function. It is convenient to define it as a vector
ψ = ψ êz, where êz is the unit vector along the z coordinate in cylindrical coordinates.
Equation (2.9a,b) can be written as V = ∇ × ψ . Taking the curl of the first (2.6a,b), we
easily find (using the identity ∇ × ∇ × ψ = ∇(∇ · ψ))− ∇2ψ), that the scalarψ obeys a
biharmonic equation ∇4ψ = 0. Using the decomposition (3.1a,b) we easily find the radial
dependence for a physically acceptable solution ψl(r, t) = α1/r|l| + α2/r|l|−2 where αi are
integration constants. These constants are determined from the second boundary condition
(2.4a,b), yielding easily

ψl(r) = ilPe(1 − r2)

2r|l| cl(1). (3.2)

Exploiting the force-free condition on the particle, the swimming velocity is obtained as
(Hu et al. 2019)

V0x = −PeRec1(1), V0y = PeImc1(1). (3.3a,b)

The advection–diffusion equation (2.1) is expanded in Fourier harmonics as

∂tcl(r) = D̂lcl(r)− [∇ · (c(r)V (r))]l, (3.4)

where D̂l is the diffusion operator applied to the lth Fourier harmonic,

D̂l = 1
r
∂r(r∂r)− l2

r2 , (3.5)

and [∇ · (c(r)u(r))]l is the lth Fourier harmonic of the advection term.

4. Stationary state and linear approximation

The linear stability of the isotropic solution was already analysed in previous works
in three dimensions (Michelin et al. 2013) and in two dimensions (Hu et al. 2019).
Nevertheless, we present it briefly as the first step of the solution of the nonlinear problem.
The isotropic solution corresponds to

c0(r, t) = c0(r) = − ln
r
R
. (4.1)

We insert expression (3.1a,b) into the advection–diffusion equation (2.5). The only
nonlinear term is the last one. In the linear regime it reads

∑
� Vr�(r)∂rc0(r) ei�φ (the zeroth
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order of velocity field is zero because the unperturbed state is the stationary particle, so
that the fluid is quiescent to leading order). We then make use of (4.1) for c0(r) and (2.9a,b)
for Vr�, by exploiting (3.2). All these together allow one to obtain from (2.5) the following
evolution equation for cl:

∂tcl(r) = L̂l(Pe)cl(r) = D̂lcl(r)+ Peul(r)cl(1), (4.2)

where L̂l(Pe) is the linear stability operator for the lth harmonic for given Pe, and we have
defined

ul(r) = l2(r2 − 1)
2rl+2 . (4.3)

This velocity contribution stems from the radial contribution of V , but we will omit the r
subscript in u� since only this contribution enters the linear operator, and this will be used
as a definition of this r-dependent function without any ambiguity in what follows.

The linear stability of the isotropic solution is governed by the eigenvalues λl,k(Pe) of
the operators L̂l(Pe), defined as

L̂l(Pe)fl,k(r,Pe) = λl,k(Pe)fl,k(r,Pe), (4.4)

where fl,k(r,Pe) are the corresponding proper functions for given Pe. The subscript l is
associated with the φ variable and k with the r one. We index the eigenvalues for given l in
descending order with respect to their real part, starting with λl,0(Pe) ≡ λl(Pe), which
corresponds to the most unstable mode. It is essential for our analysis to assume the
eigenvalue spectrum to be discrete, which is the case for a finite domain. In general,
neither the eigenvalues nor the proper functions of L̂l(Pe) have an elementary expression.
However, it is known that for each l ≥ 1, there is exactly one critical Péclet number Pel
such that the operator L̂l(Pel) has an eigenvalue equal to zero (Michelin & Lauga 2014; Hu
et al. 2019). Both Pel (i.e. Pe1 and Pe2) as a function of R and the proper function of L̂l(Pel)
corresponding to the zero eigenvalue have an explicit expression in elementary functions,
given below.

For low enough Pe, the eigenvalues of L̂l(Pe) are close to those of the diffusion operator
D̂l and are thus all negative. The isotropic solution is stable in this case (growth rate of all
modes is negative for all l). As Pe increases, one of the proper values for given l (λl,0(Pe) ≡
λl(Pe)) becomes equal to zero at Pe = Pel and positive for Pe > Pel. Thus Pel is found from

λl(Pel) = 0. (4.5)

The corresponding proper function fl,0(r,Pel) ≡ fl(r) defines the perturbation mode that
becomes unstable at Pe = Pel. Here and after we drop the eigenvalues and eigenfunctions
for the lth harmonic taken at Pe = Pel will be referred to without mentioning the value
of Pe explicitly: λl,k ≡ λl,k(Pel), fl,k(r) ≡ fl,k(r,Pe). The linear stability analysis allows us
to determine the angular dependence (given by l corresponding to the lowest Pel) and the
radial dependence (given by fl(r)) of the solution in the anisotropic phase. Further analysis
is performed by a higher-order perturbation expansion in order to compute the swimming
speed and the angular velocity of the particle in the anisotropic phase, as explained below.

Here we exclude the possibility of transition to an anisotropic concentration distribution
by a Hopf bifurcation. Since the operators L̂l(Pe) are not self-adjoint, their proper values
can be complex. It is therefore possible for the isotropic solution to become unstable due
to one of the complex eigenvalues seeing its real part become positive. We exclude this
possibility based on the results of full numerical simulations, shown below.
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5. Weakly nonlinear expansion

This section presents the derivation of the weakly nonlinear equations governing the
particle dynamics. A linear stability analysis has been already performed in two
dimensions (Hu et al. 2019), relating the growth rate σ� of the instability for each
�-harmonic, as a function of Pe and system size R. To make the calculation consistent,
we will look for conditions where the first and second harmonics are close to criticality
(by tuning R and Pe), while all other harmonics correspond to stable modes. The critical
Péclet numbers for the first two harmonics where their growth rates σ1 and σ2 vanish are
denoted as Pe1 and Pe2, respectively. This means (Hu et al. 2019) that σ� ∼ (Pe − Pe�) ∼ ε

(which defines a small parameter). In the vicinity of the instability (Pe − Pe�) is small and
we introduce an expansion parameter ε expressing this smallness. Because we require that
Pe1 ∼ Pe2, we search for a critical value of R where this condition is fulfilled. We find that
Pe1 becomes equal to Pe2 at R = Rc, where Rc = 3.17493. We thus have to assume that
R = Rc + O(ε), but also R > Rc, the second condition guaranteeing Pe1 < Pe2. Here ε is
the small parameter with respect to which the perturbation expansion is made. With these
assumptions, c = c0(r) is the only stable possible solution for Pe < Pe1. This solution
becomes unstable at Pe = Pe1 and a straight motion is expected to emerge at this point.
At some value of Pe between Pe1 and Pe2, the straight motion is expected to become
unstable in favour of a circular motion (Hu et al. 2019). Close to instability the amplitudes
of concentrations corresponding to the first two harmonics are small, and are assumed to be
of order ε. In the linear regime we have Ċ1(t) = σ1C1(t) and Ċ2(t) = σ2C2(t), where C1
and C2 correspond to the amplitudes of the first two harmonics that are close to instability
and depend on time only (by means of variable splitting the space dependence in the linear
regime can be scaled out). Since σ�,C� ∼ ε, we can see that formally time derivative
scales as ε (usual slowing down at a critical point). This means, for consistency, that the
next nonlinear terms must be of the same order as the linear ones. Due to the assumed
scaling of C� ∼ ε the first nonlinear terms balancing the linear ones, which must be of
order σ� ∼ ε2, can be of the form C2

1, C2
2 and C1C2 (and possible combinations with

complex conjugates). The expansion must then be made up to order ε2 at least. We have
been able to compute the O(ε2) terms analytically for an arbitrary value of R and also all
O(ε3) terms for a given numerical value of R. This is sufficient to reproduce quantitatively
the straight and circular motions, as shown below. Our reduced model accounts also for
irregular motions, reported in Hu et al. (2019).

5.1. General strategy
The goal of this derivation is to reduce the full dynamics of the autophoretic particle to a
simplified system of ordinary differential equations for two complex variables, C1(t) and
C2(t) (depending only on time), where C1 is the amplitude of the first harmonic and C2 is
the amplitude of the second harmonic in the concentration field. The main challenge is that
in general, each Fourier harmonic cl of the concentration field is a function of the distance
from the centre of the particle r. There is thus no straightforward way to represent the
whole function cl by a single scalar variable. We overcome this problem by decomposing
the functions c1(r) and c2(r), and cl(r) (for l > 2) as

cl(r, t) = Cl(t)fl(r)+ δcl(r, t) l ∈ {1, 2}, cl(r, t) = δcl(r, t)l 	∈ {1, 2}, (5.1a,b)

where Cl(t) is the complex amplitude, fl(r) is the proper function such that L̂l(Pel)fl(r) =
0, and δcl(r, t) is a projection of the function cl(r, t) on the space of all other proper
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functions of the operator L̂l(Pel):

δcl(r, t) =
∑
k>0

Cl,k(t)fl,k(r). (5.2)

The decomposition (5.1a,b) is made using the proper functions of L̂l(Pel) even for
Pe /= Pel. It is assumed, as usual, that the eigenfunctions fl,k constitute a complete basis.
This assumption will be justified by the fact that the reduced model consistently reproduces
the results of the full numerical solution. Note that the general strategy which follows is
not limited to a special form of the linear operator L̂l(Pel). The linear operator can be quite
general, meaning that the theory is valid for other phoretic models (for example including a
consumption of the concentration field, or changing the particle to a droplet moving under
self-sustained Marangoni effect). This is why we postpone the application to our phoretic
model to § 7, where the corresponding eigenfunctions will be defined. This means that all
what is presented in the sections preceding § 7 has a general validity.

For Pe < Pel or Pe close to Pel, the eigenvalues corresponding to the functions fl,k(r,Pe)
with k > 0 all have negative real parts. Therefore, the relaxation time scale of the
amplitudes Cl,k(t) is defined by the absolute values of λl,k(Pe) for k > 0. Since the set of
λl,k is discrete and we have assumed λl,k to be ordered decreasingly, the longest relaxation
time scale is defined by |λl,1(Pe)|−1 = |λl,1(Pel)|−1 + O(|Pe − Pel|). The relaxation time
of the fl(r,Pe) mode scales as 1/|Pe − Pel| for Pe close to Pel, which determines the main
time scale of the dynamics close to the critical point. We thus have been able to re-express
the functions δcl(r, t) as a nonlinear function of C1 and C2, with r-dependent coefficients.
This is done by adiabatic elimination, as explained below. Since the eigenvalues and
the proper functions of the operator L̂l(Pel) do not have an elementary expression, the
following procedure relies on the adiabatic elimination of the amplitude δcl(r, t) as a
function, instead of eliminating each amplitude Cl,k separately.

A similar strategy is employed to compute the r dependence of the amplitude of the other
Fourier harmonics cl(r, t) for l 	∈ {1, 2} as a function of C1 and C2, as also explained below.
This will allow us to show that the whole concentration field c(r, φ, t) can be re-expressed
as a perturbation expansion in powers of C1 and C2 after an initial transient relaxation.
We present below a procedure to compute the coefficients of this expansion as explicit
functions of r and φ.

5.2. Perturbation expansion
According to the discussion at the beginning of this section, we consider two coupled
harmonics close to their instability threshold, which results in scaling C1 = O(ε)
and C2 = O(ε). The consistency of the evolution equations requires us to admit the
following assumptions: |Pe − Pe1| = O(ε); |Pe − Pe2| = O(ε); ∂tC1 = O(ε2); ∂tC2 =
O(ε2); δc1(r, t) = O(ε2); δc2(r, t) = O(ε2); ∂tδc1(r, t) = O(ε3); ∂tδc2(r, t) = O(ε3);
δc0(r, t) = O(ε2); ∂tδc0(r, t) = O(ε3). For l > 2, we have δcl(r, t) = O(ε
l/2�) and
∂tδcl(r, t) = O(ε
l/2�+1). The smallness of ∂t is due to the critical slowing down at the
bifurcation point.

5.3. Adiabatic elimination
The problem requires us to reduce the partial derivative equations for functions cl(r) to
ordinary differential equations of two scalar amplitudes C1 and C2. This is performed by
applying adiabatic elimination, as explained in this section.
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First, we introduce the right proper function gl of the operator L̂l(Pel) such that the
corresponding eigenvalue is zero,

L̂+
l (Pel)gl(r) = 0, (5.3)

where L̂l(Pel)
+ is the adjoint operator of L̂l(Pel). The adjoint operator is defined with

respect to the inner product

〈g, f 〉 =
∫ R

1
f (r)g(r)∗r dr, (5.4)

which is chosen to maintain the self-adjoint property of the diffusion operators D̂l subject
to the boundary conditions of the functions cl(r). By the property of the adjoint operators,
the function gl is orthogonal to all functions fl,k with k > 0:

〈gl, fl,k〉 = 0 for k > 0. (5.5)

We thus reduce the projection condition to

〈gl, δcl〉 = 0. (5.6)

As stated above (just above (5.2)), δc�(r) is the projection of the function cl(r, t) on the
space of all other proper functions of the operator L̂l(Pel). This mathematically means that
δc�(r) is orthogonal to the left-vector, i.e. g�, of the adjoint operator of L̂l(Pel).

The concentration evolution is split as

∂tcl(r, t) = ∂tClfl(r)+ ∂tδcl(r, t) for l ∈ {1, 2}, (5.7)

by the definition (5.1a,b). We use gl to isolate the Cl expression from ∂tcl(r, t):

∂tCl(t) = 〈gl, ∂tcl(r, t)〉
〈gl, fl〉 , (5.8)

where ∂tc(r, t) is computed according to (3.4).
Equation (3.4) for l ∈ {1, 2} can be rewritten as

∂tcl(r, t) = L̂l(Pel)cl(r, t)+ (Pe − Pel)ul(r)cl(1)− [∇ · (c(r)V (r))]l − Peul(r)cl(1)

= L̂l(Pel) δcl(r, t)︸ ︷︷ ︸
O(ε2)

+ (Pe − Pel)︸ ︷︷ ︸
O(ε)

ul(r) cl(1)︸︷︷︸
O(ε)

− [∇ · (c(r)V (r))]l − Peul(r)cl(1)︸ ︷︷ ︸
O(ε2)

,

(5.9)

where the last term is O(ε2) because Peul(r)cl(1) represents the O(ε) part of −[∇ ·
(c(r)V (r))]l, as defined in the linearization procedure. Combining equations (5.7) and
(5.9), we obtain

fl(r)∂tCl(t) = L̂l(Pel)δcl(r, t)+ ql(r, t) for l ∈ {1, 2}, (5.10)

where

ql(r, t) = (Pe − Pel)ul(r)cl(1)− [∇ · (c(r)V (r))]l − Peul(r)cl(1)

− ∂tδcl(r, t) for l ∈ {1, 2}. (5.11)

Equation (5.10) is the main equation of the derivation, which we have solved together
with the orthogonality condition (5.6) to express both ∂tCl and δc(r, t) as a function of ql.
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The definition of ql in (5.11) includes the time derivative of δcl(r). This is not a problem
for the subsequent derivation because ∂tδcl(r) = O(ε3) and therefore this contribution can
be neglected to compute the O(ε2) terms of δcl(r, t). The present work only uses the O(ε2)
terms of δcl(r, t) but the proposed method is general enough to compute the higher-order
terms as well. Indeed, once the O(ε2) terms of δcl(r, t) are obtained as a function of C1 and
C2 with coefficients that depend on r, the dependence of δcl(r, t) on time is contained only
in C1(t) and C2(t). It is thus possible to express the O(ε3) terms in ∂tδcl(r) as a function
of C1, C2 and their time derivatives. Those time derivatives can be further re-expressed
through C1 and C2 by using the final evolution equations.

The remaining step is to solve (5.10). The expression of ∂tCl is given by (5.8). The main
challenge is to extract the quasistatic amplitudes δcl(r, t). Since we have no explicit proper
functions for L̂l(Pel), finding its inverse is far from trivial. Here the situation is even more
complicated because the operator L̂l(Pel) is not invertible in the first place.

Luckily, here the operator L̂l(Pel) can be written as

L̂l(Pel) = D̂l + ul ⊗ vl, (5.12)
where vl is a distribution defined by the relation 〈 f , vl〉 = Pel f (1) (also known as the
Dirac delta function). It is classically known that it is possible to invert explicitly the
operators of form (5.12), provided the inverse operator for D̂l is known,

(D̂l + ul ⊗ vl)
−1 = D̂−1

l − (D̂−1
l ul)⊗ (vlD̂−1

l )

1 + 〈vl, D̂−1
l ul〉

. (5.13)

This is the case for our study as the inverse of the diffusion operator can be represented
in an integral form with a simple kernel, as shown in Appendix A. The remaining difficulty
is the lack of a well-defined inverse for the operator L̂l(Pel), which we overcome, as
explained in Appendix B. The resulting solution of (5.10) reads

δcl = −D̂−1
l ql + 〈vl, D̂−1

l ql〉
〈vl, D̂−1

l fl〉
D̂−1

l fl + pl fl, (5.14)

where the coefficient pl is chosen to satisfy (5.6)

pl = 〈vl, D̂−2
l ql〉〈vl, D̂

−1
l fl〉 − 〈vl, D̂

−1
l ql〉〈vl, D̂

−2
l fl〉

〈vl, D̂
−1
l fl〉2

. (5.15)

Note that we have used here that fl = D̂
−1
l ul and gl = D̂−1

l vl, as shown in Appendix B.
The functions δcl(r, t) for l ∈ {1, 2} satisfy (5.9), which can be solved according to (5.14)

and (5.15). The remaining functions δcl(r, t) for l 	∈ {1, 2} satisfy similar equations

0 = L̂l(Pe)δcl(r, t)+ ql(r, t) for l 	∈ {1, 2}, (5.16)
where the function ql is given by

ql(r, t) = −[∇ · (c(r)u(r))]l − Peul(r)cl(1)− ∂tδcl(r, t) for l 	∈ {1, 2}. (5.17)
Since the kernel Ll(Pel) is not singular for l 	∈ {1, 2} and Pe close to Pe1 and Pe2, (5.13) is
used to compute the functions δcl(r, t) as the solutions of (5.16) for all l 	∈ {1, 2}.

We will see in the next section that using this strategy, the full partial differential
equations governing the evolution of the concentration field c(r, t) can be reduced to a
system of two differential equations for C1 and C2. The practical implementation of the
derivation procedure and the explicit expressions for some intermediate results and the
final equations are given in the next section.
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6. The derivation procedure

We use an iterative procedure obtaining the expansions of ∂tC1, ∂tC2 and δcl one order of ε
at a time. The first step is to neglect the O(ε2) terms in c(r, φ), which allows us to compute
the O(ε2) terms in ∂tC1, ∂tC2 and δcl. We then substitute the obtained expressions of δcl

into c(r, φ), keeping the terms up to O(ε2) this time, which is sufficient to obtain the order
of O(ε3) terms in ∂tC1, ∂tC2 and δcl. This procedure can be continued ad infinitum but we
stop at computing the O(ε3) terms of ∂tC1 and ∂tC2, which is sufficient for our purposes.

According to (5.1a,b) and the order of magnitude analysis (see § 5.2), the concentration
field can be written as

c(r, φ, t) = c0(r)︸︷︷︸
O(1)

+ (C1 eiφ + C∗
1 e−iφ)f1(r)+ (C2 e2iφ + C∗

2 e−2iφ)f2(r)︸ ︷︷ ︸
O(ε)

+ δc0(r)+
4∑

l=1

(δcl(r) eilφ + δcl(r)∗ e−ilφ)

︸ ︷︷ ︸
O(ε2)

+O(ε3), (6.1)

where C1 and C2 are time-dependent complex amplitudes of the two modes that are close
to instability and δck(r) are functions of r with coefficients that depend on C1, C2, R and
Pe.

Each iteration consists in the following steps:

(i) the concentration field (6.1) defines the stream function according to (3.2), from
which the fluid velocity field is calculated;

(ii) knowing the velocity field and the concentration, the advection term ∇ · (c(r)V (r))
is computed;

(iii) the advection term is then decomposed into Fourier harmonics which yields the
amplitudes [∇ · (c(r)V (r))]l;

(iv) these amplitudes are then used to compute the ql terms according to (5.11) and (5.17);
(v) ∂tC1 and ∂tC2 are computed at a given order according to (5.8);

(vi) the quasistatic values of δcl are computed according to (5.14) and (5.15) for l ∈ {1, 2}
and according to (5.13) for l ∈ {1, 2}.

The last step can be omitted for the final iteration.

7. Evolution equations for C1(t) and C2(t) to leading order

Hitherto, we did not specify the form of the linear operator, so that all previous steps
remain generally valid, in the sense that they can be used for a variety of phoretic
swimmers. Certainly, the stream function used a specific boundary condition (2.8a,b) in
order to determine the integration constants αi in ψ . We could use any other boundary
conditions between V and c, and between ∂rc and c (instead of a constant −1). This would
have only altered the values of the integration constant, while the general derivations in the
previous sections still can be applied. Here, we will exemplify the explicit derivation on the
phoretic model (2.5)–(2.8a,b). This will allow us to provide an explicit expression for the
coefficients entering the set of equations for C1 and C2, whereas the form of the equations
remains general, and is only related to symmetries. We first start with the derivation to
order ε2. The starting point is to use (5.10). Multiplying this equation by gl and integrating
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both sides according to the scalar product (5.4) we obtain

∂tCl(t) = 〈gl, ql〉
〈gl, fl〉 , (7.1)

where we have used 〈gl, L̂l(Pel)δcl〉 = 〈L̂+
l (Pel)gl(r), δcl〉 = 0, by virtue of (5.3). Since

∂tδcl(r, t) = O(ε3), this term in ql (see (5.11)) does not enter to order ε2. The next step is
to insert (6.1) into ql (see (5.11)) and report the resulting expression into (7.1). Note that
δcl in (6.1) does not enter to this order neither since it produces O(ε3) contribution to (7.1)
(see also (5.10) for orders in ε). We are thus left, on the right-hand side of (7.1), with scalar
products involving fl and gl (and ul, which is a known function, see (4.3)) with prefactors
containing linear and quadratic terms of Cl(t)′s. The inner product calculation requires, in
principle, the knowledge of fl and gl.

The linear stability of the solution (4.1) is governed by the eigenvalues of the linear
operators L̂l in (4.2). The critical Péclet numbers are

Pe1 = − 2(R2 + 1)
R2 − (R2 + 1) ln (R)− 1

, (7.2)

Pe2 = − R4 + 1

−R4

4
+ R2 − ln (R)− 3

4

, (7.3)

and the corresponding proper functions are

f1(r) = R2 − r2

2r(R2 + 1)
+
(r2 + 1) ln

( r
R

)
4r

, (7.4)

f2(r) =
(−R2 + r2)

(
2R2 − 2

(
R2

r2 + 1
)

ln (R)− 1 − R2 + 2
r2

)

4R4 + 4
+

ln
( r

R

)
2r2 . (7.5)

Here we have computed fl as D̂
−1
l ul and Pel is obtained from condition 〈vl, D̂−1

l ul〉 = 1,
as shown in Appendix B. It turns out we do not need the explicit expression of gl. Indeed,
noting that because gl = D̂−1

l vl (see Appendix B), any inner product in the form 〈gl,H(r)〉
can be written as

〈gl,H(r)〉 = 〈D̂−1
l vl,H(r)〉 = 〈vl, D̂−1

l H(r)〉 = Pel[D̂−1
l H(r)]r=1. (7.6)

Recall that D̂l is self-adjoint and so is its inverse. The calculation of D̂−1
l is performed

in Appendix A. We are now in a position to calculate the inner product in (7.1).
Consider the case l = 1, and collect the linear term in c1 in (5.11), which is given by
(Pe − Pe1)u1c1(1) = (Pe − Pe1)C1(t)u1(r)f1(1) (where u1(r) is given by given by (4.3)).
Using (7.1), we obtain from the right-hand side

(Pe − Pe1)C1(t)f1(1)
〈g1(r), u1(r)〉
〈g1(r), f1(r)〉 = (Pe − Pe1)C1(t)f1(1)

[D̂−1
1 u(r)]r=1

[D̂−1
1 f1(r)]r=1

, (7.7)

where we have used (7.6). In Appendix A we show how to calculate D−1
1 , and the above

expression can easily be evaluated as a function of R. Reporting this into (7.1) yields the
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C1(t) equation to linear order. The next term from ql is quadratic in cl and comes from the
combination of second (advection term) and third terms in (5.11). It reads, after using the
expressions of ur and uθ (see (2.9a,b), where ψl is given by (3.2))

∑
m /= 1

mcm(1, t)Pe
2r|m|+1

[
(r2 − 1)m

∂c1−m(r, t)
∂r

+ (m − 1)(2r2 + (1 − r2)|m|)c1−m(r, t)
]
.

(7.8)

By using cl(r, t) = Cl(t)fl(r), and retaining only first and second harmonics, it is easy to
see that the result reads as C∗

1C2h(r), where h(r) is a function of r only (it is a combination
of f1 and f2 and their derivatives with respect to r). Once this expression is injected into
(7.1) on the right-hand side we obtain

C1(t)∗C2(t)
〈g1(r), h(r)〉
〈g1(r), f1(r)〉 = C1(t)∗C2(t)

[D̂−1
1 h(r)]r=1

[D̂−1
1 f1(r)]r=1

. (7.9)

The last term can easily be obtained as algebraic rational functions of R and ln R (see
Appendix B). The same reasoning can be made for the equation of C2. The nonlinear term
is found to be proportional to C1(t)2. Collecting linear and nonlinear terms in C1 and C2,
the resulting system of equations to the second order is found to be given by

Ċ1 = σ1C1 + α1C2C∗
1 + O(ε2), (7.10a)

Ċ2 = σ2C2 + α2C2
1 + O(ε2), (7.10b)

where different coefficients are functions of R and are listed in Appendix C.

8. Equations for C1 and C2 to next order

The next-order terms turn out to be essential for nonlinear saturation. We need thus to
extend the derivation to O(ε3). We use (6.1) and insert it into (7.1). Taking into account δcl
in (6.1) will lead to higher-order terms. Here δcl is given by (5.14) and (5.15) for l ∈ {1, 2}
and by (5.13) for l 	∈ {1, 2}. Inserting these solutions into (6.1) allows us, by using (7.1), to
obtain the desired terms. The cubic terms are of the form |C1|2C1,|C2|2C1 for the equation
of C1 and |C1|2C2,|C2|2C2 for the equation of C2. There is also a contribution of δcl in the
form of ∂tδcl in definition of ql. Since the time derivative is small (critical slowing down),
the quadratic contribution arising from δcl are sufficient. For example the equation for C1
yields terms in the form ∂t(C∗

1C2) = C∗
1∂tC2 + C2∂tC∗

1. Using (7.10) we can express these
terms as quadratic and cubic terms. The final set of equation takes the form

Ċ1 = σ1C1 + α1C2C∗
1 − β1|C2|2C1 − γ1|C1|2C1, (8.1a)

Ċ2 = σ2C2 + α2C2
1 − β2|C1|2C2 − γ2|C2|2C2. (8.1b)

The coefficients of the cubic terms have expressions in R which become too involved. For
this reason, we have resorted to computing them for a given numerical value of R, making
them just real numbers. It can be shown that the above set of (8.1) is universal, in that its
form depend only symmetry properties (Misbah et al. 2021). In other words, this set of
equations is expected for any other model where motility is due to chemical activity.
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Figure 2. Comparison between the analytical prediction and the direct numerical simulation of the particle
velocity and angular velocity in stationary, straight and circular phases. The system size is set to R = 3.25. The
solid curves are obtained by a direct numerical solution of the C1, C2 equations. The symbols are the results
of the full numerical simulations. In both cases the steady-state values are obtained by running the simulations
for a long time until (of the order of 105a2/D). The horizontal axis is cut at Pe = 5.9 above which the absolute
value of the velocity does not seem to reach a steady state.

0.03

Reduced model Full solution Difference
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Figure 3. Comparison between the concentration fields c(r)− c0(r) predicted by the reduced model and the
direct numerical simulation. The system size is set to R = 3.25. The Péclet number is set to Pe = 5.8. Panel
(a) shows the reduced model, (b) shows the full numerical simulation and (c) shows the difference. The
coordinates are rotated to align the velocity with the horizontal axis in panels (a) and (b). The isotropic part of
the concentration field c0(r) = ln r/R is subtracted in panels (a) and (b) for better contrast..

9. Comparison between the full model and the reduced one

Here we would like to compare the reduced model (8.1) with the full model (as described
in § 2). The full model is solved using finite difference discretization. The reduced
model (8.1) is a set of ordinary differential equations, the numerical solution of which
is straightforward. The results of the comparison are shown in figure 2 for the steady-state
values of the swimming speed and the angular velocity of the particle (a non-zero value
of the angular velocity corresponds to a circular trajectory). As can be seen, the reduced
C1 and C2 model is in quantitative agreement with the full numerical simulation. This
good agreement of the reduced model with full numerical simulations is also found for the
concentration field, as shown in figure 3.

The solution of the C1 and C2 model shows that as the Péclet number is increased,
the particle shows non-motile solution as the stable fixed point for Pe < Pe1, straight
motion (velocity is constant in time and finite, but angular velocity is equal to zero) for
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Figure 4. An irregular trajectory obtained from solution of (8.1) for Pe = 5.95.

Pe∗ > Pe > Pe1, and a circular trajectory (both the swimming speed and the angular
velocity remain fixed in time) for Pe∗∗ > Pe > Pe∗. No stable fixed point solution could
be obtained for Pe > Pe∗∗. Here we have Pe∗ ≈ 5.77 and Pe∗∗ ≈ 5.9. By increasing
further Pe we find that the solution becomes irregular, pointing to the occurrence of chaos
(figure 4). This irregular mode is of peculiar nature, as demonstrated by the inspection of
the time evolution of C1(t) and C2(t) in figure 5, made possible by the reduced model. The
system possesses an unstable fixed point, corresponding to C1 = 0 and |C2| = 0.147 for
Pe = 5.95. The phase of fixed-point value of C2 is arbitrary due to the symmetry of the
problem, which dictates that (8.1) remain invariant under transformation

C1 → C1 eiφ0, C2 → C2 e2iφ0, (9.1a,b)

corresponding to a rotation of the concentration field about the particle centre. Taking the
fixed point C2 = 0.147, we observe that it is unstable with respect to the growth of ReC1(t),
although it is stable with respect to the growth of ImC1(t). As C1(t) becomes large enough,
the nonlinear effects lead to C2 changing its sign, tending to the fixed point C2 = −0.147
(same absolute value as before but opposite sign). This fixed point is stable with respect to
real perturbations of ReC1 but unstable with respect to perturbations of ImC1. This leads
to a cyclic behaviour in which the changes of the sign of C2 correspond to changes of
C1 between real and purely imaginary values. The explanation for this is that changing
the sign of C2 corresponds to a rotation of the second harmonic of the concentration
field by an angle of ±π/2. From this, we conclude that the motion of the particle is
divided between intervals of straight motion and intervals of quasistationary dynamics,
during which the particle velocity makes a 90◦ turn. Mathematically, this dynamics should
correspond to a heteroclinic orbit, although the imperfection of the numerical solution
and finite-precision arithmetic never allow us to reach this orbit. As a consequence we
observe a chaotic random-walk dynamics, in which the left-hand or right-hand 90◦ turns
are probably determined by numerical noise. The circular trajectory and chaotic one have
been also obtained by numerical simulation in Hu et al. (2019) using the full model. In
a recent three-dimensional (3-D) simulation (Hu et al. 2022) we have also reported on
chaos via intermittency (exactly as in two dimensions). In another recent work (Misbah
et al. 2021) by taking the set of (8.1) as a phenomenological model (extracted on the
basis of symmetries, without reference to any given basic model) it has been shown that it
reproduces a variety of solutions going from straight, circular to chaotic trajectories. The
circular trajectory could even be obtained analytically (Misbah et al. 2021) from (8.1).
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Figure 5. Time-dependent dynamics of C1(t) and C2(t) during the irregular motion. Panels (a) and (b) differ
only by the range of the time axis. The simulations were started from an arbitrary initial conditions but a
sufficient interval of transient dynamics is excluded from the image. The phases of C1(t) and C2(t) were
then adjusted by an appropriate rotation of the concentration field in the φ domain, as given by (9.1a,b). The
imaginary part of C2(t) is not shown because after the rotation it practically remains zero to machine precision
after the initial transient is excluded..

10. Conclusion

We have extracted from a phoretic model in two dimensions, including advection and
diffusion, a reduced model in terms of ordinary differential equations for the first two
Fourier modes. This model captures, in a much less numerically expensive manner,
essential features encountered in the full model. The derivation has been performed for
the two first modes to cubic order. Extension to a higher number of modes can also be
performed, as well as going to higher orders than cubic terms. This will be essential if one
wishes to have a wider range of applicability of the method. The method is a priori valid
close to critical point. Despite this restriction, the reduced model captures several essential
features found in the full numerical simulation. The idea to focus on critical points is a
classical method in nonlinear systems. Still, reducing the model to few harmonics has
turned out to impressively capture nonlinear dynamics even very far from threshold.
A prototypical example of these is the Rayleigh–Bénard convection (Dauby et al. 2001).

The derivation can be extended to three dimensions without any additional conceptual
complication. The only modification is the use of spherical harmonics instead of Fourier
modes. Note also that the full 3-D simulation (Hu et al. 2022) has captured many of the
features encountered in the full 2-D simulation (Hu et al. 2019) (like meandering and
transition to chaos via intermittency). The method has been exemplified here for a specific
phoretic model. However, the same technique can be used for any swimmer powered by
one or many chemical fields. Examples of great topicality are found in models of cell
motility, involving acto-myosin kinetics inside the cell, outside and on the cell membrane,
as well as cortex flow and flow in the suspending and internal fluids (Hawkins et al. 2011;
Callan-Jones et al. 2016; Farutin et al. 2019). Our general method did not have to specify
explicitly the form of linear operator until § 7, precisely to highlight its generality.

In the specific phoretic model we considered here, it has been shown in three dimensions
(Rednikov, Ryazantsev & Velarde 1994; Morozov & Michelin 2019b) that the bifurcation
from the non-motile to the motile state is not classical, in that |V0| ∼ (Pe − Pe1), meaning
that V0 ∼ ±(Pe − Pe1) (instead of ±(Pe − Pe1)

1/2). This is referred to as (Farutin &

952 A6-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

87
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.870


Phoretic swimmer

Misbah 2021) a singular pitchfork bifurcation (it is not a transcritical bifurcation Morozov
& Michelin (2019b)), owing to the appearance of an absolute value of V0 (non-analytical
form). However, we have shown recently (Farutin & Misbah 2021) that the singular
behaviour holds only for an infinite size. A finite size (even arbitrary large) removes the
singularity and yields a classical pitchfork bifurcation. This has been demonstrated in our
3-D simulation (Hu et al. 2022) where finite size leads to a pitchfork bifurcation. In the 2-D
situation studied here, the finite size is already imperative due to the logarithmic behaviour
with distance r of the concentration field of the non-motile solution; and leads again to a
pitchfork bifurcation. The finite size is also natural in 2-D simulations (Hu et al. 2019). In
an extension to three dimensions one has to keep a finite size in order to allow for a regular
expansion (in the way we did it here). However, there exist (Farutin & Misbah 2021) other
ways than resorting to finite size, in order to regularize the bifurcation. For instance, adding
a linear consumption term in the diffusion equation removes the singularity both in two
dimensions and three dimensions and leads to a classical pitchfork bifurcation (even for
an infinite size). Studying steady motion along a straight line in an infinite 3-D domain
without consumption is feasible (Rednikov et al. 1994) but the bifurcation turns out to be
singular, so the situation is at present unclear for time-dependent solutions or solutions
with curved trajectories.

Finally, since the reduced model equations have a form which depends only on
symmetries, different models for active entities can be gathered together within a universal
framework, so that they are all described by the same reduced evolution equations (of the
type (8.1)). Differences between explicit models will be encoded only in the values of
coefficients in the reduced model.
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Appendix A. Inverting the diffusion operator

A solution to the equation

1
r

d
dr

(
r

dF
dr

)
− l2F

r2 = G(r), (A1)

can be written as

F(r) =

⎧⎪⎪⎨
⎪⎪⎩

1
2l

[
r−l

∫ r
G(ρ)ρ1+l dρ − rl

∫ r
G(ρ)ρ1−l dρ

]
+ A1rl + A2r−l for l > 0

ln r
∫ r

G(ρ)ρ dρ −
∫ r

ρ ln ρG(ρ)dρ + A1 + A2 ln r for l = 0
,

(A2)
where the constants A1 and A2 are calculated by imposing the boundary conditions

∂rF(1) = 0 F(R) = 0. (A3a,b)
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The problem considered here requires solving (A1) with functions G(r) written as a
combination of integer powers of r and ln r. This allows us to calculate the integrals in
(A2) analytically.

Appendix B. Inverting the advection–diffusion operator

Suppose we have a system of equations

μf = (M + u ⊗ v) · x + y
〈g, x〉 = 0

}
, (B1)

where μ is a number, M is a matrix, u, v, x, y, f , g are vectors, and

(M + u ⊗ v) · f = 0,
g · (M + u ⊗ v) = 0.

}
(B2)

The first (B1) corresponds to (5.10) where μ represents ∂tCl, M + u ⊗ v is the linear
operator L̂(Pel) (see (5.12)), x represents δcl and y represents ql. The second equation
represents the orthogonality condition (5.6). Equation (B2) represents the eigenvalue
problem L̂(Pel)fl(r) = 0 and its adjoint (5.3).

The goal of this appendix is to find the solution of the system (B1) representing x and
μ as a function of M−1, u, v and y. First, we note the following relations:

f ∝ M−1 · u, g ∝ v · M−1, 〈v,M−1 · u〉 = −1, (B3a–c)

which we obtain from (B2). Multiplying the first equation in (B1) by M−1, we get

μM−2 · u = [I + (M−1 · u)⊗ v] · x + M−1 · y, (B4)

whence

x = μM−2 · u − (M−1 · u)〈v, x〉 − M−1 · y. (B5)

Equation (B5) implies the following ansatz for x:

x = −M−1 · y + pM−1 · u + qM−2 · u, (B6)

where p and q are two numbers to be determined. It is then straightforward to substitute
equation (B6) into (B5) to get the values of μ and q as

q = μ = 〈v,M−1 · y〉
〈v,M−2 · u〉 . (B7)

The value of p is determined from the second equation of (B1). It is convenient that the
solution (B7) use the vector v only as part of 〈v, ·〉 which allows us to use its definition
〈 f , v〉 = Pef (1).
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Appendix C. Coefficients of the reduced model

In the following we list the coefficients of the linear and quadratic terms and plot those of
the cubic term:

σ1 = 16(Pe − Pe1)(R2 ln (R)− R2 + ln (R)+ 1)2

3R6 + 8R4 ln (R)2 − 40R4 ln (R)+ 19R4 + 8R2 ln (R)2 + 4R2 ln (R)
−35R2 + 12 ln (R)+ 13

, (C1)

α1 = −

2(R2 + 1)(20R10 ln (R)2 − 40R10 ln (R)+ 21R10 + 8R8 ln (R)2 + 48R8 ln (R)
−63R8 + 16R6 ln (R)3 − 48R6 ln (R)2 + 56R6 ln (R)+ 46R6 + 32R4 ln (R)3

−56R4 ln (R)2 − 8R4 ln (R)+ 6R4 + 16R2 ln (R)3 − 20R2 ln (R)2

−48R2 ln (R)− 3R2 − 8 ln (R)− 7)

R2(R4 + 1)(R2 ln (R)− R2 + ln (R)+ 1)(3R6 + 8R4 ln (R)2 − 40R4 ln (R)
+ 19R4 + 8R2 ln (R)2 + 4R2 ln (R)− 35R2 + 12 ln (R)+ 13)

,

(C2)

σ2 = 3(Pe − Pe2)(R4 − 4R2 + 4 ln (R)+ 3)2

12R8 ln (R)− 13R8 + 16R6 ln (R)+ 8R6 + 12R4 ln (R)+ 6R4 − 8R2

+ 8 ln (R)+ 7

, (C3)

α2 =
3(R4 + 1)2(R2 ln (R)− R2 + ln (R)+ 1)(6R6 ln (R)− 7R6 + 6R4 ln (R)

+ 9R4 + 6R2 ln (R)− 9R2 + 6 ln (R)+ 7)

(R2 + 1)2(R4 − 4R2 + 4 ln (R)+ 3)(12R8 ln (R)
−13R8 + 16R6 ln (R)+ 8R6 + 12R4 ln (R)+ 6R4 − 8R2 + 8 ln (R)+ 7)

. (C4)

Appendix D. Explicit expression

Here we list the explicit expressions for ∂tC1 and ∂tC2 for R = 3.25. We first have
simplified the expressions assuming Pe to be close to the critical Péclet number Pec =
5.9561, which is the critical Péclet number for R = Rc = 3.17493, such that Pe1(Rc) =
Pe2(Rc) = Pec. We then define �P = Pe − Pec = O(ε) and truncate all expressions
keeping only terms of order O(ε3) or higher, as follows:

∂tC1 = C1(0.0484 + 0.1799�Pe − 0.00244�Pe2)− C∗
1C2(1.227 + 0.2467�Pe)

− 0.2016C1|C1|2 − 3.077C1|C2|2 + O(ε4), (D1a)

∂tC2 = C2(0.0411 + 0.3701�Pe − 0.00123�P e2)+ C2
1(0.5921 + 0.0905�Pe)

− 3.1214|C1|2C2 − 1.7893|C2|2C2+O(ε4). (D1b)
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