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Wavelet Transform and its Applications

§1 Short-time Fourier Transform and Uncertainty Principle
‚ Drawback of Fourier transform/series:
Classical Fourier analysis is quite inadequate for most applications.

1 The Fourier analysis assumes that signals are infinite in time or
periodic, while many signals in practice are of short duration,
and change substantially over their duration.

2 The formula
pfk =

1

2π

ż π

´π

f (y)e´iky dy

does not even reflect frequencies that evolve with time.

What is really needed is for one to be able to determine the time
intervals that yield the spectral information on any desirable
range of frequencies (or frequency band).
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Wavelet Transform and its Applications

§1 Short-time Fourier Transform and Uncertainty Principle
The short-time Fourier transform (STFT): for a given f P L2(R), we
consider the following integral

G[f ](t, η) =
ż

R
f (τ)e´iητ w(τ ´ t)dτ

for some w P L2(R) (with compact support or decaying rapidly - the
explicit condition will be given later), called the window function,
for “extracting” local information from pf .

The “optimal” window for time-localization is achieved by using any
Gaussian function

w(t) = 1
?
4πσ2

exp
(

´
t2
4σ2

)
,

where σ is fixed, as the window function.
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Wavelet Transform and its Applications

§1 Short-time Fourier Transform and Uncertainty Principle
For a good choice of σ ą 0, one can obtain

Figure 1: Figure from “the wavelet tutorial”
for the signal

f (t) ‘‘=” sin(75t)1[0,15)(t) + sin(50t)1[15,30)(t)
+ sin(25t)1[30,40)(t) + sin(10t)1[40,50](t) .
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Wavelet Transform and its Applications

§1 Short-time Fourier Transform and Uncertainty Principle
‚ Uncertainty principle
For any window function w P L2(R), we define the center t˚ and
radius of ∆w by

t˚ =
1

}w}22

ż

R
t |w(t)|2dt (1)

and

∆w =
1

}w}2

( ż

R
(t ´ t˚)2|w(t)|2dt

) 1
2
. (2)

Then using window function w, the STFT of f

G[f ](t, η) =
ż

R
f (τ)e´iητ w(τ ´ t)dτ

gives local information of f in the time-window[
t˚ + t ´ ∆w, t˚ + t +∆w

]
.
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Wavelet Transform and its Applications

§1 Short-time Fourier Transform and Uncertainty Principle
Suppose that the Fourier transform pw of w is also a window function,
we can determine the center ω˚ and radius ∆

pw, of the window
function pw, by using formulas analogous to (1) and (2); that is,

ω˚ =
1

}pw}22

ż

R
ω |pw(ω)|2dω,

∆
pw =

1

}pw}22

( ż

R
(ω ´ ω˚)2|pw(ω)|2dω

) 1
2
.

One can “show” that (something similar to the STFT of pf with
window function pw /(2π))

ż

R

pf (ω)e itω e´itη

2π
pw(ω ´ η)dω

gives local information of pf in the frequency-window[
ω˚ + η ´ ∆

pw , ω
˚ + η +∆

pw
]
.
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Wavelet Transform and its Applications

§1 Short-time Fourier Transform and Uncertainty Principle
In summary, by choosing any w P L2(R) such that both w and pw
are both window functions to define the window Fourier transform
we have a time-frequency window[

t˚ + t ´ ∆w, t˚ + t +∆w
]

ˆ
[
ω˚ + η ´ ∆

pw, ω
˚ + η +∆

pw
]

with width 2∆w and height 2∆
pw (as determined by the width of the

time-window) and constant window area 4∆w∆
pw.
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Wavelet Transform and its Applications

§1 Short-time Fourier Transform and Uncertainty Principle
The uncertainty principle for STFT is given by the following
Theorem
Let w P L2(R) be chosen such that both w and its Fourier transform
pw are “qualified window functions”. Then

∆w∆
pw ě

1

2
.

Furthermore, equality is attained if and only if

w(t) = ce iat

4
?
πσ2

exp
(

´
(t ´ b)2
4σ2

)
,

where c ‰ 0, and σ, a, b P R.

Remark: A qualified window function w P L2(R) satisfies
ż

R
t2
ˇ

ˇw(t)
ˇ

ˇ

2dt ă 8 .
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Wavelet Transform and its Applications

§1 Short-time Fourier Transform and Uncertainty Principle
It follows that for high-frequency spectral information, the time-
interval should be relatively small to give better accuracy, and for
low-frequency spectral information, the time-interval should be rel-
atively wide to give complete information. In other words, it is
important to have a flexible time-frequency window that automat-
ically narrows at high “center-frequency” and widens at low center-
frequency.
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Wavelet Transform and its Applications

§2 Continuous Wavelet Transform
Definition (Wavelet)
A wavelet is a function ψ P L2(R) which satisfies the admissibility
condition

Cψ ”

ż

R

ˇ

ˇ pψ(ω)
ˇ

ˇ

2

|ω|
dω ă 8 ,

where pψ is the Fourier transform of ψ.

Definition (Continuous Wavelet Transform)
If ψ P L2(R), and ψa,b is given by

ψa,b(t) =
1

a

|a|
ψ
( t ´ b

a

)
, (3)

then the integral transformation Wψ defined on L2(R) by

Wψ[f ](a, b) = xf, ψa,by
L2(R)

=
ż

R
f (t)ψa,b(t)dt

is called a continuous wavelet transform of f (relative to wavelet ψ).
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Wavelet Transform and its Applications

§2 The Wavelet Series and Multi-Resolution Analysis (MRA)
Example (The Haar Wavelet)
The Haar wavelet (Haar 1910) is one of the classic examples. It is
defined by

ψ(t) =

$

&

%

1 if 0 ď t ă 1/2,

´1 if 1/2 ď t ă 1,

0 otherwise.
(4)

t

ψ(t)

1
0.5

1

´1

ˇ

ˇ pψ(ω)
ˇ

ˇ

ω

‚1

4π
‚

8π
‚

12π
‚

´4π
‚

´8π
‚

´12π
‚

Figure 2: The Haar wavelet and its Fourier transform
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Wavelet Transform and its Applications

§2 Continuous Wavelet Transform
Example (The Mexican Hat Wavelet)
The Mexican hat wavelet is defined by the second derivative of a
Gaussian function as

ψ(t) = (1 ´ t2) exp
(́ t2

2

)
= ´

d2

dt2 exp
(́ t2

2

)
= ψ1,0(t) ,

pψ(ω) = yψ1,0(ω) =
?
2πω2 exp

(́
ω2

2

)
.

ψ(t)

t

(a)

?
3´

?
3

pψ(ω)

ω

(b)

?
2´

?
2

Figure 3: (a) The Mexican hat wavelet ψ0,0. (b) its Fourier transform yψ1,0
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Wavelet Transform and its Applications

§2 Continuous Wavelet Transform
Example (The Mexican Hat Wavelet - cont’d)
Two other wavelets, ψ 3

2
,´2 and ψ 1

4
,
?
2, from the mother wavelet

ψ = ψ0,0 can be obtained. These three wavelets, ψ0,0, ψ 3
2
,´2, and

ψ 1
4
,
?
2, are shown in Figure 4(i), (ii), and (iii), respectively.

ψa,b(t)

t

´1

´0.5

0

0.5

1

1.5

2

0 20´2´4´6´8

(i)(ii) (iii)

Figure 4: Three wavelets ψ0,0, ψ 3
2 ,´2, ψ 1

4 ,
?
2
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Wavelet Transform and its Applications

§2 Continuous Wavelet Transform
Theorem (Inversion Formula)
If f P L2(R), then f can be reconstructed by the formula

f (t) = 1

Cψ

ż

R

ż

R
Wψ[f ](a, b)ψa,b(t)

dbda
a2 , (5)

where the equality holds almost everywhere.
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
Similar to the discrete Fourier transform (motivated from the Fourier
transform/series), we would like to answer the fundamental question
whether we can reconstruct f from discrete values of its wavelet
transform Wψ[f ]. In particular, we would like to reconstruct f using
the discrete values of Wψ[f ] at a = am

0 and b = nb0am
0 ; that is,

(Wψ[f ])(am
0 , nb0am

0 ) = a´ m
2

0

ż

R
f (t)ψ(a´m

0 t ´ nb0)dt ,

where a0 ‰ 0, b0 are some given and fixed constants, and m, n are
integers (later we will set a0 = 1/2 and b0 = 1).
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
Define

ψm,n(x) = a´m/2
0 ψ(a´m

0 x ´ nb0) , (6)

where we abuse the use of notation here and do not confuse with

ψa,b(t) =
1

a

|a|
ψ
( t ´ b

a

)
(3)

which is used to define the continuous wavelet transform. Using (6),
we have

(Wψ[f ])(am
0 , nb0am

0 ) = xf, ψm,ny
L2(R)

.

The discrete wavelet transform represents a function by a countable
set of wavelet coefficients, which correspond to points on a two
dimensional grid or lattice of discrete points in the scale-time domain
indexed by m and n.
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
Our goal is to find a function ψ P L2(R) such that the family
␣

ψm,n
(

m,nPZ that forms a “basis” of L2(R). In particular, we want
the family of functions

␣

ψm,n
(

m,nPZ is obtained by

ψm,n(x) = 2m/2ψ(2mx ´ n) @ m, n P Z , (7)

for some square-integrable function ψ (” ψ0,0) with compact sup-
port, and an orthonormal “basis”

␣

ψm,n
(

m,nPZ is preferable.

Suppose we have such an orthonormal “basis”
␣

ψm,n
(

m,nPZ of L2(R).
Then evey f P L2(R) admits the expression

f =
ÿ

m,n PZ
xf, ψm,ny

L2(R)
ψm,n

and the magnitude of cm,n gives us more information about f.
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
Definition
A function ψ P L2(R) is called an orthogonal/ orthonormal
wavelet (or o.n. wavelet), if the family tψm,num,nPZ, as defined by
(7), is an orthonormal basis of L2(R); that is,

xψm,n, ψk,ℓyL2(R)
= δmk δnℓ @ m, n, k, ℓ P Z

and every function f P L2(R) can be written as

f (x) =
8
ÿ

m,n=´8

cm,nψm,n(x) ,

where cm,n = xf, ψm,ny
L2(R)

and the convergence of the series above
is in L2(R); that is,

lim
M1,N1,M2,N2Ñ8

›

›

›

›

f ´

N2
ÿ

n=´M2

N1
ÿ

m=´M1

cm,nψm,n

›

›

›

›

L2(R)
= 0 .
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
Example
The simplest example of an orthonormal wavelet is the classic Haar
wavelet given by

ψ(t) =

$

&

%

1 if 0 ď t ă 1/2,

´1 if 1/2 ď t ă 1,

0 otherwise.
(8)

Figure 5: The graph of the Haar function
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
Example (cont’d)
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
Example (Expressing a function using wavelet series)
Consider the function f (given by its graph)

and we compute the wavelet series of f using the Haar wavelet.
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
Example (Expressing a function using wavelet series - cont’d)

1 m ď ´2: xf, ψm,0y
L2(R)

= 9 ¨ 2m/2´1, and xf, ψm,ny
L2(R)

= 0 for
all n ‰ 0.

2 m = ´1: xf, ψm,0y
L2(R)

= 2m/2´1, and xf, ψm,ny
L2(R)

= 0 for all
n ‰ 0.

3 m = 0: xf, ψm,ny
L2(R)

= 0 if n ě 2 or n ă 0, and

xf, ψm,0y
L2(R)

= ´
3

2
, xf, ψm,1y

L2(R)
= 1 .

4 m = 1: xf, ψm,ny
L2(R)

= 0 if n ě 4 or n ă 0, and

xf, ψm,0y
L2(R)

= ´

?
2

20
, xf, ψm,1y

L2(R)
= ´

?
2

20
,

xf, ψm,2y
L2(R)

=
2

?
2

5
, xf, ψm,3y

L2(R)
=

?
2

10
.

5 m ě 2: xf, ψm,ny
L2(R)

= 0 for all n P Z.
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
Example (Expressing a function using wavelet series - cont’d)

Therefore, the sum dm ”
8
ř

n=´8

xf, ψm,ny
L2(R)

ψm,n (not summing over
m yet) is

1 m ď ´2: dm = 9 ¨ 2m´1
[
1[0,2´m´1)´ 1[2´m´1,2´m)

]
.

2 m = ´1: dm =
1

4

[
1[0,1)´ 1[1,2)

]
.

3 m = 0: dm = ´
3

2

[
1[0, 1

2
)´ 1[ 1

2
,1)

]
+
[
1[1, 3

2
)´ 1[ 3

2
,2)

]
.

4 m = 1:

dm = ´
1

10

[
1[0, 1

4
)´ 1[ 1

4
, 1
2
)

]
´

1

10

[
1[ 1

2
, 3
4
)´ 1[ 3

4
,1)

]
+
4

5

[
1[1, 5

4
)´ 1[ 5

4
, 3
2
)

]
+

1

5

[
1[ 3

2
, 7
4
)´ 1[ 7

4
,2)

]
.

5 For m ě 2, dm = 0.
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
Example (Expressing a function using wavelet series - cont’d)

Define fk ”
k
ř

m=´8

dm =
k
ř

m=´8

8
ř

n=´8

xf, ψm,ny
L2(R)

ψm,n. Then

1 k ď ´2:

fk =
k
ÿ

m=´8

9 ¨ 2m´1
[
1[0,2´m´1)´ 1[2´m´1,2´m)

]
= 9 ¨ 2k1[0,2) .

2 k = ´1:
fk = fk´1+dk =

9

4
1[0,2)+

1

4

[
1[0,1)´1[1,2)

]
=

5

2
1[0,1)+21[1,2) .

3 k = 0:
fk = fk´1 + dk

=
5

2
1[0,1)+21[1,2) ´

3

2

[
1[0, 1

2
)´ 1[ 1

2
,1)

]
+
[
1[1, 3

2
)´ 1[ 3

2
,2)

]
= 1[0, 1

2
)+ 41[ 1

2
,1)+31[1, 3

2
)+ 1[ 3

2
,2) .
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
Example (Expressing a function using wavelet series - cont’d)

5 k = 1:
fk = fk´1 + dk

= 1[0, 1
2
)+ 4 ¨ 1[ 1

2
,1)+3 ¨ 1[1, 3

2
)+ 1[ 3

2
,2)

´
1

10

[
1[0, 1

4
)´ 1[ 1

4
, 1
2
)

]
´

1

10

[
1[ 1

2
, 3
4
)´ 1[ 3

4
,1)

]
+
4

5

[
1[1, 5

4
)´ 1[ 5

4
, 3
2
)

]
+

1

5

[
1[ 3

2
, 7
4
)´ 1[ 7

4
,2)

]
= 0.9 ¨ 1[0, 1

4
) + 1.1 ¨ 1[ 1

4
, 1
2
) + 3.9 ¨ 1[ 1

2
, 3
4
) + 4.1 ¨ 1[ 3

4
,1)

+3.8 ¨ 1[1, 5
4
) + 2.2 ¨ 1[ 5

4
, 3
2
) + 1.2 ¨ 1[ 3

2
, 7
4
) + 0.8 ¨ 1[ 7

4
,2)

= f .
6 k ě 2: since dk = 0 for all k ě 2, fk = f for all k ě 2.

The process of making the sum fk´1+dk is to add detail information
dk to the coarse information fk´1 to obtain a finer fk.
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§3 Discrete Wavelet Transform and Orthonormal Wavelets
Example (Expressing a function using wavelet series - cont’d)
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
‚ Matlab commands dwt:
The level 1 discrete wavelet transform of x ”

[
x0, x1, ¨ ¨ ¨ , x2n´1

]
,

using Haar wavelet, can be obtained by the matlab command
[c,d] = dwt(x,‘haar’);

where the output c is the coarse vector[x0 + x1
?
2
,

x2 + x3
?
2
, ¨ ¨ ¨ ,

x2n´2 + x2n´1
?
2

]
and the output d is the detail vector[x0 ´ x1

?
2
,

x2 ´ x3
?
2
, ¨ ¨ ¨ ,

x2n´2 ´ x2n´1
?
2

]
.

In general, the matlab command
[c,d] = dwt(input vector,‘name of wavelet’);

gives the coarse vector c and detail vector d after 1 level of “average”
using the specific wavelet named name of wavelet.
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
‚ Matlab commands wavedec:
The level 1 discrete wavelet transform of x ”

[
x0, x1, ¨ ¨ ¨ , x2n´1

]
,

using Haar wavelet, can also be obtained by the matlab command
[c,l ] = wavedec(x,1,‘haar’);

where c is the vector[x0+x1
?
2
,

x2+x3
?
2
, ¨ ¨ ¨ ,

x2n´2+x2n´1
?
2

,
x0 ´x1

?
2
,

x2 ´x3
?
2
, ¨ ¨ ¨ ,

x2n´2 ´x2n´1
?
2

]
In general, the matlab command

[c,l ] = wavedec(input vector,level,‘name of wavelet’);
gives
c: this output consists of the final coarse vector after level-times

“average” and the detail information for each level. The
structure of c is similar to [f´2, d´1, d0, d1] if level = 3;

l: the length of (a) the final coarse vector, (b) the detail infor-
mation at each level, and (c) the input.
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Wavelet Transform and its Applications

§3 Discrete Wavelet Transform and Orthonormal Wavelets
‚ Matlab commands for reconstruction:
The inverse operation of dwt and wavedec are idwt and waverec,
respectively, given below:

[c,d] = dwt(x,‘name of wavelet’);
ô x = idwt(c,d,’name of wavelet’);

and
[c,l ] = wavedec(x,level,‘name of wavelet’);

ô x = waverec(c,l,’name of wavelet’);
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Wavelet Transform and its Applications

§4 Multi-Resolution Analysis (MRA)
Before proceeding, let us introduce the translation T and the dilation
operator d, D that are often used (to simplify the notation) in the
study of the wavelet theory: for f : Rn Ñ R, x, y P Rn and c P Rzt0u,

(Ty f )(x) = f (x ´ y), (dcf )(x) = f
(x

c

)
, (Dcf )(x) =

1
a

|c|
f
(x

c

)
.

Therefore,
ψm,n(x) ” 2m/2ψ(2mx ´ n) = (D2´mTnψ)(x) .

Remark: For the dilation operator dc (or Dc), the smaller the num-
ber c, the finer the “resolution”.
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Wavelet Transform and its Applications

§4 Multi-Resolution Analysis (MRA)
Definition
An MRA consists of a sequence tVmumPZ of embedded closed sub-
spaces of L2(R) that satisfy the following conditions:

1 ¨ ¨ ¨ Ď V´2 Ď V´1 Ď V0 Ď V1 Ď V2 Ď ¨ ¨ ¨ .

2
8
Ť

m=´8

Vm is dense in L2(R) and
8
Ş

m=´8

Vm = t0u.

3 f P Vm if and only if d1/2f P Vm+1 for all m P Z;
4 there exists a function ϕ P V0 such that tϕ0,nunPZ is an or-

thonormal basis for V0; that is,

}f }2L2(R) =
8
ÿ

n=´8

ˇ

ˇ

ˇ
xf, ϕ0,ny

L2(R)

ˇ

ˇ

ˇ

2
@ f P V0 .

The function ϕ is called the scaling function or father wavelet,
and ϕ is said to generate the MRA.
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Wavelet Transform and its Applications

§4 Multi-Resolution Analysis (MRA)
‚ Consequences of the Definition of MRA

i A repeated application of condition 3⃝ implies that f P Vm if
and only if d2mf P V0 for all m P Z. Moreover, the fact that
tϕ0,nunPZ is an orthonormal basis of V0 shows that tϕm,nunPZ

is an orthonormal basis for Vm.
ii Condition 2⃝ can be expressed in terms of the orthogonal pro-

jections Pm onto Vm; that is, for all f P L2(R),
lim

mÑ´8
Pm f = 0 and lim

mÑ8
Pm f = f .

The projection Pm f can be considered as an approximation of f
at the scale 2´m. Indeed, we have

Pm f =
8
ÿ

n=´8

xf, ϕm,ny
L2(R)

ϕm,n ,

where ϕm,n is an orthonormal basis for Vm.
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Wavelet Transform and its Applications

§4 Multi-Resolution Analysis (MRA)
iii Since V0 Ď V1, the scaling function ϕ that leads to a basis

for V0 also belongs to V1. Since ϕ P V1 and tϕ1,nunPZ is an
orthonormal basis for V1, ϕ can be expressed in the form

ϕ(x) =
8
ÿ

n=´8

xϕ, ϕ1,ny
L2(R)

ϕ1,n(x) .

The equation above is called the dilation equation, two-scale
equation or refinement equation.
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Wavelet Transform and its Applications

§4 Multi-Resolution Analysis (MRA)
The real importance of an MRA lies in the simple fact that it enables
us to construct an orthonormal wavelet for L2(R). Suppose that
tVmu8

m=´8 is an MRA. Define Wm as the orthogonal complement
of Vm in Vm+1 for every m P Z, so that we have for m P N,

Vm+1 = Vm ‘ Wm =
(

Vm´1 ‘ Wm´1

)
‘ Wm = ¨ ¨ ¨

= V0 ‘ W0 ‘ W1 ‘ ¨ ¨ ¨ ‘ Wm = V0 ‘

( m
À

k=0

Wk
)

and Vn K Wm for n ă m.

Since
8
Ť

m=´8

Vm is dense in L2(R), we may take the limit as m Ñ 8

to obtain
V0 ‘

( 8
à

m=0

Wm
)
= L2(R) .

Ching-hsiao Arthur Cheng 鄭經斅 影像處理專題Ｉ MA3113-*



Wavelet Transform and its Applications

§4 Multi-Resolution Analysis (MRA)
The real importance of an MRA lies in the simple fact that it enables
us to construct an orthonormal wavelet for L2(R). Suppose that
tVmu8

m=´8 is an MRA. Define Wm as the orthogonal complement
of Vm in Vm+1 for every m P Z, so that we have for m P N,

Vm+1 = Vm ‘ Wm =
(

Vm´1 ‘ Wm´1

)
‘ Wm = ¨ ¨ ¨

= V0 ‘ W0 ‘ W1 ‘ ¨ ¨ ¨ ‘ Wm = V0 ‘

( m
À

k=0

Wk
)

and Vn K Wm for n ă m.

Since
8
Ť

m=´8

Vm is dense in L2(R), we may take the limit as m Ñ 8

to obtain
V0 ‘

( 8
à

m=0

Wm
)
= L2(R) .

Ching-hsiao Arthur Cheng 鄭經斅 影像處理專題Ｉ MA3113-*



Wavelet Transform and its Applications

§4 Multi-Resolution Analysis (MRA)
The real importance of an MRA lies in the simple fact that it enables
us to construct an orthonormal wavelet for L2(R). Suppose that
tVmu8

m=´8 is an MRA. Define Wm as the orthogonal complement
of Vm in Vm+1 for every m P Z, so that we have for m P N,

Vm+1 = Vm ‘ Wm =
(

Vm´1 ‘ Wm´1

)
‘ Wm = ¨ ¨ ¨

= V0 ‘ W0 ‘ W1 ‘ ¨ ¨ ¨ ‘ Wm = V0 ‘

( m
À

k=0

Wk
)

and Vn K Wm for n ă m.

Since
8
Ť

m=´8

Vm is dense in L2(R), we may take the limit as m Ñ 8

to obtain
V0 ‘

( 8
à

m=0

Wm
)
= L2(R) .

Ching-hsiao Arthur Cheng 鄭經斅 影像處理專題Ｉ MA3113-*



Wavelet Transform and its Applications

§4 Multi-Resolution Analysis (MRA)
Similarly, we may go in the other direction to write

V0 = V´1 ‘ W´1 = (V´2 ‘ W´2) ‘ W´1 = ¨ ¨ ¨

= V´m ‘ W´m ‘ ¨ ¨ ¨ ‘ W´1 .

Since
8
Ş

m=´8

Vm = t0u, it follows that lim
mÑ8

V´m = t0u which further

implies that
V0 =

´1
à

m=´8

Wm .

Consequently, it turns out that
8
à

m=´8

Wm = L2(R) .
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Wavelet Transform and its Applications

§4 Multi-Resolution Analysis (MRA)
Finally, the difference between the two successive approximations
Pmf and Pm+1f is given by the orthogonal projection Qmf of f onto
the orthogonal complement Wm of Vm in Vm+1 so that

Qm f = Pm+1 f ´ Pm f .

It follows from conditions 1⃝- 4⃝ in the definition of MRA that the
spaces Wm are also scaled versions of W0 and, for f P L2(R),

f P Wm if and only if d2mf P W0 @ m P Z

since
f P Wm ô f P Vm+1 and f K Vm

ô d2mf P V1 and d2mf K V0

ô d2mf P W0 .
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§4 Multi-Resolution Analysis (MRA)
Moreover, Wm’s are mutually orthogonal spaces generating all L2(R):

Wm K Wk if m ‰ k and
à

mPZ
Wm = L2(R) ,

and are translation-invariant for the discrete translations n P Z:

f P W0 if and only if Tn f P W0 ,

where the translation-invariant is due to the following equivalence:

f P W0 ô f P V1 and f K V0

ô f L2

=
8
ÿ

k=´8

ckϕ1,k for some tcku8
k=´8 P ℓ2 and f K V0

ô Tnf L2

=
8
ÿ

k=´8

ck´2nϕ1,k for some tcku8
k=´8 P ℓ2

and Tnf K V0

ô Tnf P V1 and Tnf K V0 ô Tnf P W0 .
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§4 Multi-Resolution Analysis (MRA)
Therefore, if one can show that there exists a function ψ P W0

such that tψ0,nunPZ constitutes an orthonormal basis for W0, then
it follows from the fact that

f P Wm if and only if d2mf P W0 @ m P Z

tψm,nunPZ constitute an orthonormal basis for Wm. Since
8
à

m=´8

Wm = L2(R) ,

we then also conclude that the family tψm,num,nPZ represents an
orthonormal basis of wavelets for L2(R).
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§5 Construction of Father and Mother Wavelets
Theorem
Let ϕ be a bounded function with compact support, pϕ(0) = 1, and
tϕ0,nunPZ is an orthonormal system in L2(R). If it holds the two-
scale equation

ϕ(x) =
8
ÿ

n=´8

xϕ, ϕ1,ny
L2(R)

ϕ1,n(x) ,

then Vm defined Vm = closure}¨}L2(R)

(
span

(
tϕm,nunPZ

))
forms an

MRA tVmumPZ.
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Wavelet Transform and its Applications

§5 Construction of Father and Mother Wavelets
Theorem
If tVnunPZ is an MRA with the scaling function ϕ, then there is a
mother wavelet ψ given by

ψ(x) =
?
2

8
ÿ

n=´8

(´1)´n´1c´n´1ϕ(2x ´ n)

=
8
ÿ

n=´8

(´1)´n´1c´n´1ϕ1,n(x) ,

where the coefficients cn are given by

cn = xϕ, ϕ1,ny
L2(R)

=
?
2
ż

R
ϕ(x)ϕ(2x ´ n)dx .
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§5 Construction of Father and Mother Wavelets
Remark: The study of the father wavelet ϕ is usually transformed
to the study of its generating function pm defined by

pm(ω) =
1

?
2

8
ÿ

n=´8

xϕ, ϕ1,ny
L2(R)

e´inω

which satisfies
pϕ(ω) = pm

(
ω

2

)
pϕ
(
ω

2

)
.

The reason for the name “generating function” is that if ϕ P L1(R)
and pϕ(0) = 1, then

pϕ(ω) = pm
(
ω

2

)
pϕ
(
ω

2

)
= pm

(
ω

2

)[
pm
(
ω

4

)
pϕ
(
ω

4

)]
= ¨ ¨ ¨

= pm
(
ω

2

)
pm
(
ω

4

)
¨ ¨ ¨ pm

(
ω

2k

)
pϕ
(
ω

2k

)
=

[ k
ś

ℓ=1

pm
(
ω

2ℓ

)]
pϕ
(
ω

2k

)
Ñ

8
ś

ℓ=1

pm
(
ω

2ℓ

)
as k Ñ 8 ,

so one can “generate” the father wavelet ϕ using pm .
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§5 Construction of Father and Mother Wavelets
It can be shown that if tcnunPZ P ℓ2 satisfying

8
ÿ

n=´8

cn =
?
2 ,

and certain decay conditions, and pm defined by

pm(ω) =
1

?
2

8
ÿ

n=´8

cn e´inω

satisfies
ˇ

ˇ

pm(ω)
ˇ

ˇ

2
+
ˇ

ˇ

pm(ω + π)
ˇ

ˇ

2
= 1 @ω P R ,

then pm generates a father wavelet ϕ whose Fourier transform is given
by

pϕ(ω) =
8
ź

ℓ=1

pm
(
ω

2ℓ

)
.
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§5 Construction of Father and Mother Wavelets
Theorem
Let ϑ be a 2π-periodic continuous function satisfying

ˇ

ˇϑ(ω)
ˇ

ˇ

2
+
ˇ

ˇϑ(ω + π)
ˇ

ˇ

2
= 1 @ω P R ,

and tdnunPZ be the “Fourier coefficients” of ϑ satisfying

ϑ(ω) =
1

?
2

8
ÿ

n=´8

dne´inω .

If ϑ(ω0) = 0 and tdnunPZ “decays fast enough”, then pm defined by

pm(ω) =
e iα
?
2

8
ÿ

n=´8

(´1)ndne´in(ω+ω0) ,

where α is chosen so that pm(0) = 1, is a generating function of a
father wavelet ϕ; that is, the Fourier transform of ϕ is given by

pϕ(ω) =
8
ź

ℓ=1

pm
(
ω

2ℓ

)
.
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§5 Construction of Father and Mother Wavelets
Example (Daubechies’ Wavelets)
The Daubechies’ (father) wavelet ϕ is a “smooth” wavelet with
compact support which is obtained by assuming that the function ϑ
in the previous theorem takes the form

ϑ(ω) =
(
1 + e´iω

2

)N
pL(ω)

for some N P N, where pL(ω) is a polynomial of cosω with pL(0) =
1 and pL(π) ‰ 0. We note that in this case only finitely many
dn’s are non-zero; thus the decay condition is fulfilled automatically.
Moreover, that only finitely many dn’s are non-zero implies that pm
is smooth.
The number N is highly associated with the differentiability of ϕ:
larger N implies higher order of differentiability. However, the case
N = 1 and L = 1 reduces to the case of the Haar wavelet.
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§5 Construction of Father and Mother Wavelets
Example (Daubechies’ Wavelets - cont’d)

(figures from wiki)
Figure 6: Some Daubechies’ wavelets and corresponding scaling functions
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