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Topic 1: Perona-Malik-type denoising models

The earliest nonlinear diffusion model proposed in image
processing is the anisotropic diffusion (非等方性的擴散) by
Perona and Malik [PM-1990].

Let f : Ω ⊂ R2 → R be a given noisy grayscale image. The IBVP
of the Perona-Malik equation can be posed as follows:

∂u
∂t

−∇ ·
(

g(|∇u|)∇u
)
= 0 for (t, x) ∈ (0, T)× Ω,

u(0, x) = f (x) for x ∈ Ω,
∇u · n = 0 for t ∈ [0, T] and x ∈ ∂Ω.

where g is a smooth non-increasing diffusivity function with

g(0) = 1, g(s) ≥ 0, and lim
s→∞

g(s) = 0;

|∇u| = |(ux, uy)
⊤| :=

√
u2

x + u2
y.
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Topic 1: Perona-Malik-type denoising models (cont’d)

Two diffusivity functions: Perona and Malik suggested two different
choices for the diffusivity function g:

g(s) =
1

1 + (s/λ)2 , s ≥ 0,

g(s) = e−(s/λ)2
, s ≥ 0,

where λ > 0 is a given parameter.
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Topic 1: Perona-Malik-type denoising models (cont’d)

The regularized Perona-Malik diffusion equation: To alleviate the
staircasing effect, we consider the following regularized equation:

∂u
∂t

−∇ ·
(

g(|∇uσ|)∇u
)
= 0,

where uσ := Gσ ∗ u, σ > 0, is a Gaussian-smoothed version of u.

(a) original noisy image; (b) Perona-Malik diffusion;
(c) regularized Perona-Malik diffusion.
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Topic 1: Perona-Malik-type denoising models (cont’d)

References

• [PM-1990] P. Perona and J. Malik, Scale-space and edge
detection using anisotropic diffusion, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12 (1990), pp. 629-639.

• [E-2012]* E. Erdem, Nonlinear diffusion PDEs, Lecture Notes,
Hacettepe University, 2012.
https://web.cs.hacettepe.edu.tr/˜erkut/bil717.s12/
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Topic 2: A denoising model with adaptive diffusivity

Let f : Ω ⊂ R2 → R be a given noisy grayscale image. Consider the
following minimization problem:

min
u

(∫
Ω

ϕ(|∇u|) dx +
λ

2

∫
Ω
(u − f )2 dx

)
,

where λ > 0 is a regularization parameter, ϕ is a regularization
function, and | · | denotes the usual ℓ2-norm,

|∇u| = |(ux, uy)
⊤| :=

√
u2

x + u2
y.

Note: ROF model: ϕ(|∇u|) := |∇u|.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Some Project Topics – 6/29



Topic 2: A denoising model with adaptive diffusivity (cont’d)

Staircasing effect and edge-preserving: Consider the regularization
function ϕ(s) = sp:

1 < p ≤ 2: eliminating the staircasing effect to obtain a more
smooth image, e.g., p = 2, the Tikhonov model.

p = 1: the ROF total variation model.

0 < p < 1: more effective than ROF (p = 1) for preserving edges,
but it results in a non-convex problem.
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Topic 2: A denoising model with adaptive diffusivity (cont’d)

We propose the following convex regularization model:

min
u

∫
Ω

(αp,q

q
|∇u|q + λ

2
(u − f )2

)
dx,

where

q = 1 or 2, and here we consider q = 2.

αp,q = αp,q(|∇u∗(x)|) > 0 is a spatially variable controller that will
be defined later.

|∇u∗(x)| is a quantity that approximates the magnitude of the
gradient of the original image at x.

0 < p ≤ 1 and λ > 0 is a constant regularization parameter.

The Euler-Lagrange equation can be derived as follows:

αp,2∆u + λ(f − u) = 0 in Ω. (⋆1)
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Topic 2: A denoising model with adaptive diffusivity (cont’d)

From another perspective, to keep the edge-preserving property, we
consider the lower-order regularization model with 0 < p ≤ 1:

min
u

∫
Ω

1
p
|∇u|p + λ

2
(u − f )2 dx.

The Euler-Lagrange equation is given by

∇ ·
(
|∇u|p−2∇u

)
+ λ(f − u) = 0 in Ω.

In a very rough approximation form, we may consider the related
equation,

|∇u|p−2∆u + λ(f − u) = 0 in Ω. (⋆2)

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Some Project Topics – 9/29



Topic 2: A denoising model with adaptive diffusivity (cont’d)

In comparison with (⋆1) and (⋆2) suggests us to define the adaptive
diffusivity αp,2 as

αp,2(|∇u∗(x)|) :=
{

|∇u∗(x)|p−2 if |∇u∗(x)| ̸= 0,
ε−1 if |∇u∗(x)| = 0,

where 0 < p ≤ 1 and ε > 0 is a prescribed small number.

Remark: For the image pixels where |∇u∗(x)| ≈ 0, the model for
q = 2 and 0 < p ≤ 1 with the above adaptive diffusivity has extra
smoothing effect since αp,2 is large and its EL equation is very close to
∆u = 0 at those pixels.
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Topic 2: A denoising model with adaptive diffusivity (cont’d)

(a) (b) (c) (d)

(e) (f) (g) (h)

Numerical results “Lena”, where the noise level is σ = 15 and the denoising
parameter is λ = 0.04 for both ROF and present algorithm. (a) and (e) are

the global and local plots of the original “Lena” image; (b) and (f) correspond
to the noisy version; (c) and (g) are the denoising results by ROF; (d) and

(h) are the denoising results by present algorithm with (p, q) = (1, 2).

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Some Project Topics – 11/29



Topic 2: A denoising model with adaptive diffusivity (cont’d)

References

• [C-2007] R. Chartrand, Nonconvex regularization for shape
preservation, In: Proceedings of IEEE International Conference on
Image Processing (ICIP), (2007), pp. 293-296.

• [LZOX-2015] Y. Lou, T. Zeng, S. Osher, and J. Xin, A weighted
difference of anisotropic and isotropic total variation model for
image processing, SIAM Journal on Imaging Sciences, 8 (2015), pp.
1798-1823.

• [YL-2015] J. Yan and W. S. Lu, Image denoising by generalized
total variation regularization and least squares fidelity,
Multidimensional Systems and Signal Processing, 26 (2015), pp.
243-266.

• [HSY-2018]* P.-W. Hsieh, P.-C. Shao, and S,-Y, Yang, A
regularization model with adaptive diffusivity for variational
image denoising, Signal Processing, 149 (2018), pp. 214-228.
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Topics 3: Sparse representation and dictionary learning

Sparse representation problem: Given a signal vector x ∈ Rm and a
dictionary matrix D ∈ Rm×n, we seek a coefficient vector z∗ ∈ Rn

such that
z∗ = arg min

z

{1
2
∥x − Dz∥2

2 + λ∥z∥1

}
,

where λ > 0 is a penalty parameter.

Sparse dictionary learning problem: Let {xi}N
i=1 ⊂ Rm be a given

dataset of signals. We seek a dictionary matrix D = [d1, d2, · · · , dn]
∈ Rm×n together with the sparse coefficient vectors {zi}N

i=1 ⊂ Rn that
solve the minimization problem:

min
D,{zi}

{1
2

N

∑
i=1

∥xi − Dzi∥2
2 + λ

N

∑
i=1

∥zi∥1

}
subject to ∥dk∥2 ≤ 1, ∀ 1 ≤ k ≤ n,

where λ > 0 is a penalty parameter.
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Topics 3: Compact form of the SDL problem

To simplify the formulation of the SDL problem, we define

X = [x1, x2, · · · , xN] ∈ Rm×N, Z = [z1, z2, · · · , zN] ∈ Rn×N.

Then the SDL problem can be posed as follows: Given a training data
matrix X, find a dictionary matrix D and a coefficient matrix Z such that

min
D,Z

(1
2
∥X − DZ∥2

F + λ∥Z∥1,1

)
subject to ∥dk∥2 ≤ 1, ∀ 1 ≤ k ≤ n.

In the compact form, ∥ · ∥F denotes the Frobenius norm defined as
follows: for a matrix A = [a1, a2, · · · , aN] ∈ Rm×N,

∥A∥2
F :=

N

∑
i=1

∥ai∥2
2

and ∥Z∥1,1 is the L1,1-norm which is defined as

∥Z∥1,1 :=
N

∑
i=1

∥zi∥1.
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Topic 3: SR and DL for image fusion and mage inpainting

(L) source A; (M) source B; (R) fused image.

corrupted image inpainted image
λ = 0.2 for DL and λ = 0.1 for SR
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Topic 3: SR and DL for image fusion (cont’d)

• *Matlab codes developed by Brendt Wohlberg at Los Alamos
National Laboratory:
http://brendt.wohlberg.net/software/SPORCO/

• [SWM-2007] Y. Sharon, J. Wright, and Y. Ma, Computation and
relaxation of conditions for equivalence between ℓ1 and ℓ0

minimization, UIUC Technical Report UILU-ENG-07-2008, 2007.

• [LCWW-2016] Y. Liu, X. Chen, R. K. Ward, and Z. J. Wang,
Image fusion with convolutional sparse representation, IEEE
Signal Processing Letters, 23 (2016), pp. 1882-1886.

• [MA3111]* S.-Y. Yang, Image Inpainting, Lecture Slides, 2024.
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Topic 4: Poisson image editing

The objective is to seamlessly clone a region selected from an image
over a background image.

Let u∗ be the destination image on D and I0 be the selected image.
This problem can be formulated as a variational problem:

min
u∈C2(D),u|D\Ω=u∗ |D\Ω

∫
Ω
|∇u − v|2dx,

D ⊂ R2 is an open bounded subset of R2, D represents the
image domain, and Ω ⊂ D.

C2(D) is the set of real functions twice differentiable over D.

v is a differentiable gradient field obtained from the selected
image, v = ∇I0.
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Topic 4: Poisson image editing (cont’d)

The solution of the minimization problem must satisfy the
Euler-Lagrange equation:

∆u = ∇ · v in Ω, and u = u∗ on∂Ω,

and of course outside Ω the solution is trivial and takes the same
values of u∗.

D := R

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Some Project Topics – 18/29



Topic 4: Poisson image editing (cont’d)

• [PGB-2003] P. Pérez, M. Gangnet, and A. Blake, Poisson image
editing, SIGGRAPH03: Special Interest Group on Computer
Graphics and Interactive Techniques, San Diego, California, July
27-31, 2003.

• [DFM-2016]* J. M. Di Martino, G. Facciolo, E. Meinhardt-Llopis,
Poisson image editing, Image Processing On Line, 6 (2016), pp.
300-325.
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Topic 5: Single image dehazing

Dark channel prior: most local patches (excluding sky regions) in outdoor
haze-free images contain some pixels whose intensity is very low in at least
one color channel (R, G, or B). That is,

Idark(x) ≈ 0, ∀ x ∈ Ω.

The dark channel Idark of an image I = (IR, IG, IB) on Ω is defined as:

Idark(x) = min
y∈N(x)

(
min

c∈{R,G,B}
Ic(y)

)
, ∀ x ∈ Ω.

(L) J; (M) For each x, minimum of its (R, G, B) values; (R) Idark.
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Topic 5: Single image dehazing (cont’d)

The dark channel prior helps estimate the haze concentration and
recover a clear image by combining it with the atmospheric scattering
model:

I(x) = t(x)J(x) + (1 − t(x))A,

I is the observed hazy image,

J is the haze-free image,

A is the global atmospheric light (a constant vector),

t(x) is the transmission map, representing the portion of light
that reaches the camera without being scattered. If the
atmosphere is homogenous, we usually set t(x) = e−βd(x).

hazy image I dehazed image
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Topic 5: Single image dehazing (cont’d)

• [HST-2011] K. He, J. Sun, and X. Tang, Single image haze
removal using dark channel prior, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33 (2011), pp. 2341-2353.

• [YE-2021] G. Yang and A. N. Evans, Improved single image
dehazing methods for resourceconstrained platforms, Journal of
Real-Time Image Processing, 18 (2021), pp. 2511-2525.

• [ZMS-2015] Q. Zhu, J. Mai, and L. Shao, A fast single image
haze removal algorithm using color attenuation prior, IEEE
Transactions on Image Processing, 24 (2015), pp. 3522-3533.
Color attenuation prior: the hazy regions are characterized by high
brightness and low saturation in the HSB color space, and the concentration of
haze is positively correlated with the difference between brightness and
saturation.
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Topic 6: Variational methods for image contrast enhancement

The main purpose of contrast enhancement is to adjust the image
intensity to enhance the quality and features of the image for a better
human visual perception or machine vision identification.

A low-light image and its enhanced result

References:

• [HSY-2020] P.-W. Hsieh, P.-C. Shao, and S.-Y. Yang, Adaptive
variational model for contrast enhancement of low-light images,
SIAM Journal on Imaging Sciences, 13 (2020), pp. 1-28.

• [MA3111] S.-Y. Yang, Image Contrast Enhancement, Lecture Slides,
2024.
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Topic 7: Robust PCA for low-rank textures

Singular value decomposition (SVD), principal component
analysis (PCA), and the Eckart-Young Theorem:

∥D − A∥ ≤ ∥D − B∥, ∀ B and rank(B) = k,

where D is the data matrix with low rank r and A is the matrix
constructed by SVD with the first k ≤ r singular values.

Robust principal component analysis (RPCA): If D is corrupted,
then we first decompose D into D = A + E and consider

min
A

∥A∥∗ + λ∥E∥1 subject to D = A + E,

where ∥ · ∥∗ denotes the nuclear norm.

Augmented Lagrangian multiplier method:

L = ∥A∥∗ + λ∥E∥1 + ⟨Y, D − A − E⟩+ µ

2
∥D − A − E∥2

F.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Some Project Topics – 24/29



Topic 7: Robust PCA for low-rank textures (cont’d)
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Topic 7: Robust PCA for low-rank textures (cont’d)

References:

• [BZ-2014] T. Bouwmans and E. H. Zahzah, Robust PCA via
principal component pursuit: a review for a comparative
evaluation in video surveillance, Computer Vision and Image
Understanding, 122 (2014), pp. 22-34.

• [Lin-2016] Z. Lin, A review on low-rank models in data analysis,
Big Data and Information Analytics, 1 (2016), pp. 139-161.

• [MA3111] S.-Y. Yang, Principal Component Pursuit, Lecture Slides,
2024.
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Topic 8: Level-set approach for image segmentation

The Chan-Vese two-phase segmentation model:

min
c1,c2,C

(
µ
∣∣C∣∣+ ν

∣∣Ωin
∣∣+ λ1

∫
Ωin

(
f (x)− c1

)2 dx + λ2

∫
Ωout

(
f (x)− c2

)2 dx
)

.

Ωin denotes the region enclosed by contour C with area |Ωin|,
and Ωout := Ω \ Ωin.

µ > 0, ν > 0, λ1 > 0, and λ2 > 0 are tuning parameters (actually,
one of them can be fixed as 1).

Chan-Vese model finds a piecewise constant function u and an
edge set C to minimize the energy functional, where u has only
two constant values,

u(x) =

{
c1, x is inside C,
c2, x is outside C.
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Topic 8: Level-set approach for image segmentation (cont’d)

Introducing the level-set function ϕ, then the minimization can be
solved by an alternating iterative scheme, i.e., alternatingly updating c1,
c2 and ϕ.

(1) Fixed ϕ, the optimal values of c1 and c2 are the region averages,

c1 =

∫
Ω f (x)H(ϕ(x)) dx∫

Ω H(ϕ(x)) dx
, c2 =

∫
Ω f (x)

(
1 − H(ϕ(x))

)
dx∫

Ω

(
1 − H(ϕ(x))

)
dx

.

(2) Fixed c1, c2, we solve the IBVP to reach a steady-state:

∂ϕ

∂t
= δϵ(ϕ)

(
µ∇ · ∇ϕ

|∇ϕ| − ν − λ1(f − c1)
2 + λ2(f − c2)

2
)

,

t > 0, x ∈ Ω,

ϕ(0, x) = ϕ0(x), x ∈ Ω,

∂ϕ

∂n
= 0 on ∂Ω, t ≥ 0.
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Topic 8: Level-set approach for image segmentation (cont’d)

• [G-2012] P. Getreuer, Chan-Vese segmentation, Image Processing
On Line, 2 (2012), pp. 214-224.

• [MA3111] S.-Y. Yang, Image Segmentation, Lecture Slides, 2024.
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