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Discrete Fourier Transform (DFT)
§1 The Fourier Series
§2 Convergence of the Fourier Series

§3 The Discrete Fourier “Transform” and the Fast Fourier
“Transform”

§4 Fourier Series for Functions of Two Variables

§5 Denoise using DFT

Ching-hsiao Arthur Cheng Bl &4 1 MA3113-*



Discrete Fourier Transform (DFT)

§1 The Fourier Series

For an (Riemann) integrable function f: [—7, 7| — R, the Fourier
series of f, denoted by §[f], is given by

S[f](x) = % o Z (ck cos kx + sy sin kx)
k=1

whenever the sum makes sense, where sequences {c.}”, and
{sk}2.1 given by
1 [ 1

k=~ f(x)coskxdx and s, = — | f(x) sin kx dx

™ J_n T™J—rx

are called the Fourier coefficients associated with f.
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

For an (Riemann) integrable function f: [—7, 7| — R, the Fourier

series of f, denoted by §[f], is given by

@

S[f](x) = S Z (ck cos kx + sy sin kx)
k=1

whenever the sum makes sense, where sequences {c.}”, and
{sk}2.1 given by
1 [ 1

ck=—=| f(x)coskxdx and s,=—=| f(x)sinkxdx

™ J_n T™J—rx

are called the Fourier coefficients associated with . The n-th
partial sum of the Fourier series to f, denoted by S,[f], is given by
Sn[f](x) = % + Z (ck cos kx + sy sin kx) .

k=1
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

Remark: Because of the Euler identity e = cosf + isin 6, we can

write
T eiky + e—iky ™ eiky _ e—iky
Ck = . f(y)Tdy and s, = . f(Y)Td%
thus

eikx -+ e—ikx eikx _ e—ikx

Salf10) = 3+ Y} (k5 — + sk—

-1 -
—iky ikx l —iky ikx
fly)e "dye"™ + 2 ﬂJﬂf(y)e dye"™™|.

k=1 " J=7 e " =
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

Remark: Because of the Euler identity e = cosf + isin 6, we can

write
T eiky + e—iky ™ eiky _ e—iky
Ck = . f(y)Tdy and s, = . f(Y)Td%
thus

eikx -+ e—ikx eikx _ e—ikx

$alf10) = 2+ 3 (@S T 4 5 S

1 (" i oo, N L (7 i ik
:§[c0+ 2; f(y)e ™dye™ + 2 fJWf(y)e v dy e .

k=1 - by " =
.oz _ 1 (" - ~  cu tis
Define fk = % f-(y)eflky dy Then fk — u, and

—T
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

The sequence {f;} 2

_, is also called the Fourier coefficients associ-
Q0 P
ated with £, and one can write the Foruier series of fas | f e/
k=—o00
(whenever the sum makes sense).
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

Remark: Given an integrable function g with period 2L, let f(x) =

g(%x) (so f(%() = g(x)).
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

Remark: Given an integrable function g with period 2L, let f(x) =

g(%x) (so f(%() = g(x)). Then fis an integrable function with

period 27, and the Fourier series of f

S[f](x) = (:2—0 + Z (ck cos kx + sk sin kx) ,

k=1
where ¢, and sy are given by
Ck = 1 f(x) cos kxdx and sk:lJ f(x) sin kx dx.
L T,
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

Remark: Given an integrable function g with period 2L, let f(x) =

g(%x) (so f(%() = g(x)). Then fis an integrable function with

period 27, and the Fourier series of f

S[f](x) = (:2—0 + Z (ck cos kx + sk sin kx) ,

k=1
where ¢, and sy are given by

Ck = % f(x)coskxdx and s, = % f(x) sin kx dx.
Now, define the Fourier series of g by 8[g](x) = S[f](%) Then
the Fourier series of g is given by

G u kmx . kmx
S[g](x) = 50 + Z (ck cos — + sksin T) ,
k=1
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

where {c,}i, and {sc}}2, is also called the Fourier coefficients

associated with g and are given by

Ck = 1 f(x) cos kx dx = lf g(L—X) cos kx dx

T J) T) T

- 1 (* .k
and similarly, s, = ZJ g(x) sin = dx.
s
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

where {c,}i, and {sc}}2, is also called the Fourier coefficients

associated with g and are given by
Ck = 1 f(x) cos kx dx = lf g(L—X) cos kx dx

T J) T) T

1t kmx
= LL g(x) cos T dx

- 1t .k - :
and similarly, s, = ZJ g(x) sm%xdx. Similar to the previous
—L

remark, the Fourier series of g can also be written as

Ching-hsiao Arthur Cheng #%5 % B ik & 4L I MA3113-*



Discrete Fourier Transform (DFT)

§1 The Fourier Series

Let L%(T) denote the collection of square integrable function on

[—7, ] modulo the relation that f ~ g if f— g = 0 except on a set

of measure zero (or f= g almost everywhere):

L2(1) = {f: [~ 7] - c]L P de< o}/ ~ .
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

Let L%(T) denote the collection of square integrable function on

[—7, ] modulo the relation that f ~ g if f— g = 0 except on a set

of measure zero (or f= g almost everywhere):

LQ(T):{f: —, 7] (C’f ]2dx<oo}/~.
Define a bilinear function (-, > on L2(T) x L%(T) by

(f,g) = ﬁ f(x)@dx.

Then (-, -) is an inner product on L2(’]I‘).
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

Let L%(T) denote the collection of square integrable function on

[—7, ] modulo the relation that f ~ g if f— g = 0 except on a set

of measure zero (or f= g almost everywhere):
LZ(T):{f: —, 7] (C‘f ]2dx<oo}/~.
Define a bilinear function {-,-) on L2(T) x L?(T) by
1 (" =
&)= 5- | F9e0) d.

Then (-,-) is an inner product on L?(T). Therefore, (L*(T),{-,-)) is
an inner product space, and the norm induced by the inner product

is denoted by | - || ;2(7); that is,

1 T 1
Il = (57 | 1FP o).
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

For k € Z, define ey : [—m, 7] — C by ex(x) = ™. Then {ex}?>
is an orthonormal set in L?(T) since

LT it g LT ikeox 4 J1 k=14,
<ek,ee>—2w e"™e M dx = WJ_We dx = 0 kel

—Tr
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

For k € Z, define ey : [—m, 7] — C by ex(x) = ™. Then {ex}?>
is an orthonormal set in L?(T) since

<ek, e€> = eikxe—iﬁx dx = LJ e,’(k_g)x dx — {1 if k= f7

2 J_ 27 0 ifk#¢.
Let
Vn — SPan(e—me—n—‘rla ctr,€0,€1, 0 >en)
n
= { Z akek’ {ak}zzin (= (C} .
k=—n

For each vector fe L%(T), the orthogonal projection of fonto V, is,
conceptually, given by

k=—n k=—n
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Discrete Fourier Transform (DFT)

§1 The Fourier Series

For k € Z, define ey : [—m, 7] — C by ex(x) = ™. Then {ex}?>
is an orthonormal set in L?(T) since

(ex,er) = 1 eihxg—ilx gy — LJ o l(k=0)x gy {1 if k=1,

2 J_ 27 0 ifk#¢.
Let
Vn — SPan(e—me—n—‘rla ctr,€0,€1, 0 >en)
n
= { Z akek’ {ak}zzin (= (C} .
k=—n

For each vector fe L%(T), the orthogonal projection of fonto V, is,
conceptually, given by

k;n@‘, exrex = k_Z:,,(;W J: f(x)e*"kx dx)ek = ;n/ﬁ(ek.

By the definition of ek, we obtain that the orthogonal projection of
fon V, is exactly 8,[f].
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Discrete Fourier Transform (DFT)

§2 Convergence of the Fourier Series

Let f: [—m, 7| be Riemann integrable. Using the formula

no~ . ~ 1 T g
Salfl(x) = Y he™,  fi=—| flye™d
[F1(x) k;nke o 27rLr (y)e " dy,
we find that
7 1 5 ik(x—
81100 = [ F0) (5 X ) dy.
=u k=—n
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Discrete Fourier Transform (DFT)

§2 Convergence of the Fourier Series

Let f: [—m, 7| be Riemann integrable. Using the formula

_ o g ikx r i " —iky
Salflo) = X hee™, Fe=go | ey,
we find that
_ T ik(x—y)
8n[F](x) Lf (27r kg e )dy
Define Dp(x) = % 3 e Then D, is 27-periodic, and
T =—n

Salf10) = | F(Y)Dalx—y) dy.

Ching-hsiao Arthur Cheng it .5 % B ik & 4L I MA3113-*



Discrete Fourier Transform (DFT)

§2 Convergence of the Fourier Series

Let f: [—m, 7| be Riemann integrable. Using the formula

siFle)= 3R, fo=g [ ey,
we find that :
$a07100 = [ f0) (52 3, M) dy.
Define D, (x) = i Zn] e’®™_Then D, is 2m-periodic, and
27 —

Salf10) = | F(Y)Dalx—y) dy.

For 27-periodic Riemann integrable functions fand g, we define the
convolution of fand g on the circle by

(&) = | F(Y)glx—y)dy.
Then S,[f](x) = (Dp * 1) (x).

Ching-hsiao Arthur Cheng it .5 % B ik & 4L I MA3113-*



Discrete Fourier Transform (DFT)

§2 Convergence of the Fourier Series

Definition
The function D, : R — R defined by

- 1
s+ 2)X e ¢ {2k | ke Z},

: X
27 sin 5

2n+1
2

Dn(x) =
if xe {2k | ke Z},

is called the Dirichlet kernel.

A
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Discrete Fourier Transform (DFT)

§2 Convergence of the Fourier Series

Definition
The function D, : R — R defined by

- 1
s+ 2)X e ¢ {2k | ke Z},
2

2n+1
2

27 sin

Dn(x) =
if xe {2k | ke Z},

is called the Dirichlet kernel.

V.

The convergence of the Fourier series of f is usually expressed in the
following terms:

For a given f, does D, x f converge to f7
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Discrete Fourier Transform (DFT)
§2 Convergence of the Fourier Series

Definition
A function fe C(T) is said to be Holder continuous with exponent

|f(x) — f(y)]
Ix — y|*

a € (0, 1], denoted by fe €%(T), if sup < 0. Let

X,y ER, x7#
| - eowry be defined by YTy

f(x) — f(y)|
f eo,a =sup|f(x)|+ su 7‘ .
“ HGO T X€¥‘ ( )} X,y € Rg@éy |X }/|a

Then | - [co.a(ry is @ norm on €%(T), and

e%(T) = {fe &(T) || flevem) < 0} -
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Discrete Fourier Transform (DFT)
§2 Convergence of the Fourier Series

Definition
A function fe C(T) is said to be Holder continuous with exponent

fo) — f
a € (0, 1], denoted by fe €%(T), if sup fe9 — 7]
X,y ER x#y |X - y‘a

< 0. Let

| - ooy be defined by

f(x) — f(y)|
f eo,a =sup|f(x)|+ su 7‘ .
“ HGO T X€¥‘ ( )} X,y € Rg@éy |X }/|a

Then | - [co.a(ry is @ norm on €%(T), and
O(T) = {fe e(T) ] | Fleo.cry < oo} .

In particular, when o = 1, a function in (‘30=1(T) is said to be Lips-

chitz continuous on T; thus €%!(T) consists of Lipschitz continuous

functions on T. )
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Discrete Fourier Transform (DFT)

§2 Convergence of the Fourier Series

For any fe C%%(T) with o € (0, 1], the Fourier series of f converges

uniformly to f on R.

A
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Discrete Fourier Transform (DFT)

§2 Convergence of the Fourier Series

For any fe C%%(T) with o € (0, 1], the Fourier series of f converges

uniformly to f on R. |

Let f: (—m,m) — R be piecewise Hélder continuous with exponent

a € (0,1]. If fis continuous on (a, b), then the Fourier series of

f converges uniformly to f on any compact subsets of (a,b). In

particular, lim 8,[f]|(xo) = f(xo) if f is continuous at xy. In other
n—o0

words, the Fourier series of f converges pointwise to f except the

discontinuities. )
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Discrete Fourier Transform (DFT)

§2 Convergence of the Fourier Series

Concerning the convergence of square integrable functions, we have
the following

Let fe L*(T). Then

lim [ 8a[F]] o) = 0

n—o0

and

L (" 2 (2 , . .
o ’f(X)’ dx = Z |f|*.  (Parseval’s identity)

k=—00 )
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Discrete Fourier Transform (DFT)
§2 Convergence of the Fourier Series

e Gibbs phenomenon

Let f: R — R be 2L-periodic piecewise Hélder continuous with

exponent « € (0,1]. Then

lim 8,[f]00) = P00y R

n—oo 2
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Discrete Fourier Transform (DFT)
§2 Convergence of the Fourier Series

e Gibbs phenomenon

Let f: R — R be 2L-periodic piecewise Hélder continuous with

exponent « € (0,1]. Then

lim 8,[f]() = () +104)

n—oo 2

VX()ER.

Moreover, if xy is a jump discontinuity of f so that
fxg)—fxg)=a#0,
then there exists a constant ¢ > 0, independent of f, xy and L (in

fact, c— + f T e % ~ 0.089490), such that
0

™ Jo X
. L
,111_{10108,,[1‘] (%o + ;) = f(xg) + ca.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

Let f: R — R be a periodic function with period L and fis Riemann
integrable on [0, L). The Fourier series of f (defined in second remark
of this slide) can be written as

0 .
Salflx) = > RetT,

k=—00

—27iky

- L
where f, = %L fly)e T dy,
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

Let f: R — R be a periodic function with period L and fis Riemann
integrable on [0, L). The Fourier series of f (defined in second remark

of this slide) can be written as

0 .
Salflx) = > RetT,

k=—00

~ L — 2l ~
where f, = %J f(y)e S dy, and fi can be approximated by the
0

Riemann sum

1N rey e L 1 NS e
LS (e R = L D (e

—2mikl
N
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

Let f: R — R be a periodic function with period L and fis Riemann
integrable on [0, L). The Fourier series of f (defined in second remark
of this slide) can be written as

0 .
Salflx) = > RetT,

k=—00

~ L — 2l A~
where f, = %J f(y)e S dy, and fi can be approximated by the
0

Riemann sum

1N e 2k L 1N 10 —omike
2 g=g 2 f(He

In other words, the values of fat N evenly distributed points can be

used to determine an approximation of the Fourier coefficients of f.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

Let f: R — R be a periodic function with period L. Suppose that

we know the values of fat N evenly distributed points {%}J’i—(}l in
. : Lj\y N—1 .

[0, L). The discrete Fourier transform of {f(N) }j:O are coefficients

{Xg},’z\lz_o1 such that the series
N—1

Z Xke%Tikx o

1
i k=0

agrees with f at these N points.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

Let f: R — R be a periodic function with period L. Suppose that
we know the values of fat N evenly distributed points {%}JN_OI in

[0, L). The discrete Fourier transform of {f(%) }jl\gl are coefficients
{Xg},’z\lz_o1 such that the series

N—1

1 27 ikx
= > Xee' L.
N k=0
agrees with f at these N points. Such {Xg}?’:_o1 must satisfy

Xo 1 1 1 1 £(0)

Xl 1 wN wlz\/ U Lf-)xil f(L/N)

Xs _ 1 wi w4,\, . w,zv(Nfl)

Xyt oWt 2D WMD) | [ F((N = 1)L/N)

where wy = e N .
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

Let f: R — R be a periodic function with period L. Suppose that

we know the values of fat N evenly distributed points {%}J’i—(}l in
. : Lj\y N—1 .

[0, L). The discrete Fourier transform of {f(N) }j:O are coefficients

{Xg},’z\lz_o1 such that the series
N—1

Z Xke%Tikx o

1
i k=0

agrees with f at these N points. Such {Xg}?’:_o1 must satisfy

Xo 1 1 1 1 £(0)
X1 1 wwn Vi wiff F(L/N)
Xs _ 1 wi w4,\, w;zv(Nfl)
Xn—1 1 W/Q/FI Wi/U\FU w/(\/Nfl)(’Vfl) f(N—1)L/N)

2mi
where wy = e~ ~ . This motivates the following
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

Definition
The discrete Fourier transform, symbolized by DFT, of a sequence
of N complex numbers {xp,x1, -+ ,xny_1} is a sequence {Xi}kez

defined by

= —2mike

1
Xe= Y. xe 7 Vkel.

£=0
4

AL 48 1 MA3113-*

Ching-hsiao Arthur Cheng #:5 %



Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

Definition
The discrete Fourier transform, symbolized by DFT, of a sequence
of N complex numbers {xp,x1, -+ ,xny_1} is a sequence {Xi}kez
defined by

= —2mike

1
Xk = Xpe N VkeZ.

£=0

4

We note that the sequence {Xy}kez is N-periodic; that is, Xyin =
Xy for all k € Z. Therefore, often time we only focus on one of the
following N consecutive terms {Xp, X1, -+, Xy_1} of the DFT.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

e The inversion formula
Let {Xk}LV;Ol be the discrete Fourier transform of {XK}QI;OI. Then

{Xg}é\l:_ol can be recovered given {Xk}kN:_O1 by the inversion formula

The map from {Xk}kN;O1 to {X[}QI;O]' is called the discrete inverse
Fourier transform.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

Remark: Given a sample data [xg, x1, - - - , xy—1] which is the values
of a function f on N evenly distributed points on [0, L) (for some

unknown L > 0), the DFT [Xp, X1, -+, Xn—1] also satisfies that

[N=1]
N—1 . 2 N—1 .
1 2mike 1 2mike 1 2mi(k—N) ¢
Xg:NZXke N =N ZXke N _*_7 Z Xe_ne N
k=0 =0 k [M]+1
[ = ] 2mike 2mikl N : ] 271'1/((
_ Z Xe N + = Z Xke N = N Z
k——[ ] —[5]
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

Remark: Given a sample data [xg, x1, - - - , xy—1] which is the values
of a function f on N evenly distributed points on [0, L) (for some
unknown L > 0), the DFT [Xp, X1, -+, Xn—1] also satisfies that

N—1 [42] N—1 .
1 ikl 1 ikl 1 2mi(k—N) ¢
:NZX;(QQN = N ZXkezN _*_7 Z Xk_ne N
= =0 [M]+1
N—1 N 1
[ ] X 27r,\llk2 i 1 ! X 27#@ . Z 2mkz
N Z = Nk_Z[N] i _N ZN
2 2

thus we may also consider the foIIowing approximation:

2mikx
X 2 Xee L 5
gyt

where ~ becomes = ifx:L—/j, 0</<N-1.

Ching-hsiao Arthur Cheng B ik & 4L I MA3113-*



Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

thus we may also consider the following approximation:
N—1
[ ] 2mikx

f(x)z% Z Xke L,

k=14

where ~ becomes = if x = LTj 0</<N-1.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

thus we may also consider the following approximation:
1 [¥] 27ikx
f(X) xr — Z Xee L,

N
k=14

where ~ becomes = if x = LTj 0 < ¢ < N-—1. Comparing with
551
~  2mikx
f(x) ~ S[%][f](x) = 2 fre T,

k=—[%5]

we find that for 0 < k < [%] each X is the coefficient associated

with the wave with frequency k/L.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

thus we may also consider the following approximation:

. Le . .
where &~ becomes = if x= N 0 < ¢ < N-—1. Comparing with
[%] ~  2mikx

) ~ S [Flo) = Y Fee™™

k=—[%5]

N—-1

we find that for 0 < k < [ ] each X is the coefficient associated

with the wave with frequency k/L. To determine L, we introduce

the sampling frequency Fs which is the number of samples per unit

time/length. Then F; = N/L so that X is the coefficient associated
. . Fs

with the wave with frequency Nk.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

o The fast Fourier transform

Let
1 1 1 1
1 2 CN-1
"UN (}./N uJN
1 W wh w2®=1) 27
Fn = N N N , wN:eXp(—W).
1 w,/c/q wﬁ(/\/q) wé/\/q)(/vq)
For v = [xg,x1, -+ ,Xxn_1]", a naive way of computing the DFT

v = Fpv of v just does the matrix-vector multiplication to compute
all the entries of V. This would take O(N?) steps to compute the

vector V.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

o The fast Fourier transform

Let
1 1 1 1
1 2 CN-1

uUN (}./N uJN
- 1 w2 w4 wQ(N—l) . 27
Fn = N N N , waeXp(—N).

1 w,/c/q wﬁ(/\/q) wé/\/q)(/vq)

For v = [xg,x1, -+ ,Xxn_1]", a naive way of computing the DFT

v = Fpv of v just does the matrix-vector multiplication to compute
all the entries of V. This would take O(N?) steps to compute the
vector v. However, there is a more efficient way of computing V.
This algorithm is called the Fast Fourier Transform (FFT, due to
Cooley and Tukey in 1965), and takes only O(Nlog, N) steps.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

We will assume N = 27, which is usually fine because we can add
zeroes to our vector to make its dimension a power of 2 (but similar
FFTs can be given also directly for most N that are not a power of
2).
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

We will assume N = 27, which is usually fine because we can add

zeroes to our vector to make its dimension a power of 2 (but similar

FFTs can be given also directly for most N that are not a power of

2). The key to the FFT is to rewrite the entries of v as follows:
Z kavk = wfkvk—i— > kavk

=0 k even k odd
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

We will assume N = 27, which is usually fine because we can add

zeroes to our vector to make its dimension a power of 2 (but similar

FFTs can be given also directly for most N that are not a power of

2). The key to the FFT is to rewrite the entries of v as follows:
Z kavk = wfkvk—i— > kavk

=0 k even k odd

ik 2mjkiy 2mj(k/2)i\ k2 o
w,JV —exp( N ) —exp(—w) = W/s if kis even,
w,j\,kfwljvw,\; 2 wa N</k2 b/2 if kis odd.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

We will assume N = 27, which is usually fine because we can add
zeroes to our vector to make its dimension a power of 2 (but similar
FFTs can be given also directly for most N that are not a power of

2). The key to the FFT is to rewrite the entries of v as follows:

= ik
= Z kavk = wfkvk—i— DT wl v
k even k odd
Jjk/2 Y J(k 1)/2
2 Wi/ Vk + W v w N/2

k even k odd

ik 2mjkiy 2mj(k/2)i\ k2 o
w,JV —exp( N ) —exp(—w) = W/s if kis even,
w,j\,kfwljvw,\; 2 wa N</k2 b/2 if kis odd.
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Discrete Fourier Transform (DFT)

i

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform’

Note that we have rewritten the entries of the N-dimensional discrete
. ~ . N . . . .

Fourier transform Vv in terms of two §—d|men5|ona| discrete Fourier

transforms, one of the even-numbered entries of v, and one of the

odd-numbered entries of v.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

Note that we have rewritten the entries of the N-dimensional discrete
Fourier transform v in terms of two g—dimensional discrete Fourier
transforms, one of the even-numbered entries of v, and one of the
odd-numbered entries of v. This suggests a recursive procedure for

computing v: first separately compute the discrete Fourier transform

_— N . . .

Veven Of the f-dlmensmnal vector of even-numbered entries of v and
. . —_— N . -

the discrete Fourier transform vgqq of the 5-d|men5|onal vector of

odd-numbered entries of v, and then compute the N entries using

A S e . N

Vi = (Veven)j + w3 (Vodd); V<< 5 1,
A _— 9 ) . N
TR = (Veven)jfw,{,(Vodd)j Vo< )< 5*1.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

The computation time T(N) it takes to implement Fp this way can
be written recursively as T(N) = 2T(g) + 2N, because we need to
compute two g’-dimensional discrete Fourier transforms and do 2N

additional operations (additions and multiplications) to compute V.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

The computation time T(N) it takes to implement Fp this way can
be written recursively as T(N) = 2T(g) + 2N, because we need to
compute two g’-dimensional discrete Fourier transforms and do 2N

additional operations (additions and multiplications) to compute V.
This works out to time T(N) = O(Nlog, N), as promised.
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Discrete Fourier Transform (DFT)

§3 The Discrete Fourier “Transform” and the Fast Fourier “Transform”

The computation time T(N) it takes to implement Fp this way can
be written recursively as T(N) = 2T(g) + 2N, because we need to
compute two g’-dimensional discrete Fourier transforms and do 2N
additional operations (additions and multiplications) to compute V.

This works out to time T(N) = O(Nlog, N), as promised. Similarly,

we have an equally efficient algorithm for the inverse discrete Fourier

= 1 . . 1
transform Fr' = NF*’ whose (J, k)-entries are Nw’JVk'
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Discrete Fourier Transform (DFT)

§4 Fourier Series for Functions of Two Variables

Let Q = [—Ly, L1] x [—La, L2] and define

@) = {0 | [ [t 0 o) <o}/ ~

equipped with the inner product

1

(£.8)= 5 | Floa,xe) gl ) d )

where v(€2) denotes the area of 2 and ~ again denotes the equiva-
lence relation defined by f ~ g if and only if f— g = 0 except on a

set of measure zero. Denote the norm induced by the inner product

o by [ ez
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Discrete Fourier Transform (DFT)

§4 Fourier Series for Functions of Two Variables

: k £
Let exe(x) = e ™)™ here x = (x1,x2). Then for each fe L%(Q),
by defining the partial sum
Snmlfl(x) = > > {fiew)ew(x)
k=—nfl=—m
we have n}ri'r_I}OO ik S,,,m[f]HLQ(Q) = 0. The limit of 8, ,[f], as
n,m — o0, in the inner product space (L?(£2),{:,-)) is denoted by

8[f] = i i (f, exe) ek

k=—00 £=—00

and is called the Fourier series of f.
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Discrete Fourier Transform (DFT)

§4 Fourier Series for Functions of Two Variables

The discrete Fourier transform (or DFT) of a collection of data
{Xmn}o<n<M—1,0<n<nN—1 is a double sequence { Xy}« ez given by

M—1 N—1

Xie = Z Z Xmn wgsze’

m=0 n=0

2mi 27i
where w,, = e~ ™ and w, = e v . The double sequence { X}« ¢z,
is doubly periodic satisfying Xy p ¢4 for all k, £ € Z; thus we usu-

ally only focus on the terms { Xis}o<k<m—1,0<t<N—1-
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Discrete Fourier Transform (DFT)

§4 Fourier Series for Functions of Two Variables

The discrete Fourier transform (or DFT) of a collection of data
{Xmn}o<n<M—1,0<n<nN—1 is a double sequence { Xy}« ez given by

M—1 N—1

Xké: 2 Z anwmk n€

m=0 n=0

27

where w,, = e~ ™ and w, = e~ %' . The double sequence { X}k ¢ez,
is doubly periodic satisfying Xy p ¢4 for all k, £ € Z; thus we usu-
ally only focus on the terms {Xy¢}o<k<m—1,0<e<n—1. The discrete in-
verse Fourier transform of a double sequence { Xk¢}o<k<m—1.0<t<N-1

is a double sequence {an}m,nez defined by

M—1 N—1
2 2 Xig ™
k 0 /=0

where w,, and w,, are complex conjugate of w,, and w,, defined above.
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