

MA 5037: Optimization Methods and Applications

Least-Squares Problem

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University
Jhongli District, Taoyuan City 320317, Taiwan

First version: May 21, 2018/Last updated: June 14, 2025

Solution of overdetermined systems

Consider an overdetermined linear system:

$$Ax = b,$$

where $A \in \mathbb{R}^{m \times n}$, $m \geq n$, and $b \in \mathbb{R}^m$. *We assume that A has a full column rank, $\text{rank}(A) = n$.* In this setting, the system is usually inconsistent (has no solution) and a common approach for finding an approximate solution is to

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|^2, \quad (LS)$$

or equivalently, to

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) := x^\top (A^\top A)x - 2(A^\top b)^\top x + \|b\|^2 \right\}. \quad (LS)$$

Since A is of full column rank, $\nabla^2 f(x) = 2A^\top A \succ 0$, $\forall x \in \mathbb{R}^n$. Therefore, (by Lemma 2.41), the unique stationary point

$$x_{LS} = (A^\top A)^{-1} A^\top b$$

is the optimal solution of problem (LS), and x_{LS} is called the least-squares solution of the system $Ax = b$.

The normal system

- It is quite common not to write the explicit expression for x_{LS} but instead to write the associated system of equations that defines it:

$$(A^\top A)x_{LS} = A^\top b.$$

The above system of equations is called the normal system.

- If $m = n$ and A is of full column rank, then A is nonsingular. In this case, the least-squares solution is actually the solution of the linear system $Ax = b$, since

$$x_{LS} = (A^\top A)^{-1} A^\top b = A^{-1} A^{-\top} A^\top b = A^{-1} b = x.$$

Example

Consider the inconsistent linear system

$$A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \mathbf{b}.$$

The least-squares problem can be explicitly written as

$$\min_{(\mathbf{x}_1, \mathbf{x}_2)^\top \in \mathbb{R}^2} \left\{ (x_1 + 2x_2)^2 + (2x_1 + x_2 - 1)^2 + (3x_1 + 2x_2 - 1)^2 \right\}.$$

We will solve the normal equations:

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}^\top \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}^\top \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix},$$

which are the same as

$$\begin{bmatrix} 14 & 10 \\ 10 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}.$$

Example (cont'd)

The solution of the above system is the least-squares estimate

$$\mathbf{x}_{LS} = \begin{bmatrix} 15/26 \\ -8/26 \end{bmatrix}.$$

The residual vector is given by

$$\mathbf{r} := \mathbf{A}\mathbf{x}_{LS} - \mathbf{b} = \begin{bmatrix} -0.038 \\ -0.154 \\ 0.115 \end{bmatrix},$$

and $\|\mathbf{r}\|_2^2 = (-0.038)^2 + (-0.154)^2 + (0.115)^2 \approx 0.038$.

To find the least-squares solution in MATLAB:

```
>> A = [1, 2; 2, 1; 3, 2];
>> b = [0; 1; 1];
>> format rational;
>> A\b
ans =
15/26
-4/13
```

Data fitting: linear fitting

Suppose that we are given a set of data points $(s_i, t_i), i = 1, 2, \dots, m$, $s_i \in \mathbb{R}^n$ and $t_i \in \mathbb{R}$, and assume that a linear relation of the form

$$t_i = s_i^\top x, \quad i = 1, 2, \dots, m,$$

approximately holds. The objective is to find the parameters vector $x \in \mathbb{R}^n$. The least-squares approach is to

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m (s_i^\top x - t_i)^2.$$

We can alternatively write the problem as

$$\min_{x \in \mathbb{R}^n} \|Sx - t\|^2,$$

where

$$S = \begin{bmatrix} s_1^\top \\ s_2^\top \\ \vdots \\ s_m^\top \end{bmatrix}, \quad t = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_m \end{bmatrix}.$$

Example

Consider 30 points in \mathbb{R}^2 , $x_i = (i - 1)/29$, $y_i = 2x_i + 1 + \varepsilon_i$, for $i = 1, 2, \dots, 30$, where ε_i is randomly generated from a standard normal distribution $\mathcal{N}(0, (0.1)^2)$. The objective is to find a line of the form $y = ax + b$ that best fits them. The corresponding linear system that needs to be “solved” is

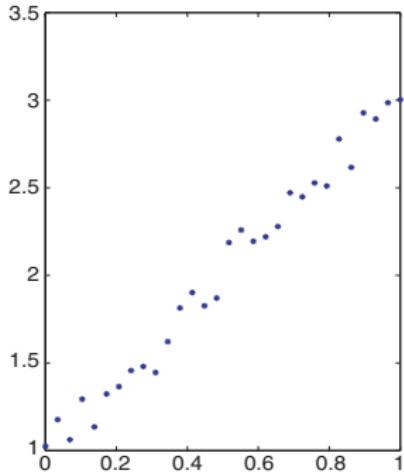
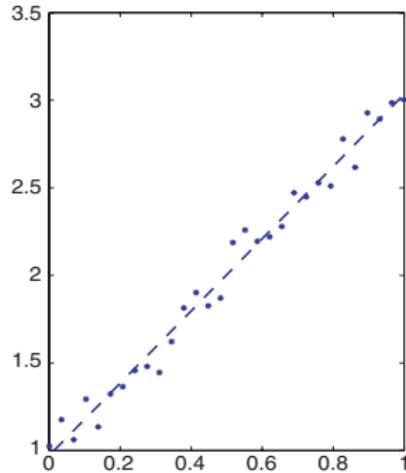
$$\underbrace{\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_{30} & 1 \end{bmatrix}}_X \begin{bmatrix} a \\ b \end{bmatrix} = \underbrace{\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{30} \end{bmatrix}}_y.$$

The least squares solution is $(a, b)^\top = (X^\top X)^{-1} X^\top y$.

```
randn('seed', 319);
d = linspace(0, 1, 30)';
e = 2*d + 1 + 0.1*randn(30, 1);
plot(d, e, '*')
```

Example (cont'd)

```
>> u = [d, ones(30, 1)]\e;
>> a = u(1), b = u(2)
a =
2.0616
b =
0.9725
```



Nonlinear fitting

Suppose that we are given a set of points in \mathbb{R}^2 , (u_i, y_i) , $1 \leq i \leq m$, $u_i \neq u_j$ for $i \neq j$, and that we know *a priori* that these points are approximately related via a polynomial of degree at most d and $m \geq d + 1$, i.e., $\exists a_0, a_1, \dots, a_d$ such that

$$\sum_{j=0}^d a_j u_i^j \approx y_i, \quad i = 1, 2, \dots, m.$$

The least-squares approach to this problem seeks a_0, a_1, \dots, a_d that are the least squares solution to the linear system

$$\underbrace{\begin{bmatrix} 1 & u_1 & u_1^2 & \cdots & u_1^d \\ 1 & u_2 & u_2^2 & \cdots & u_2^d \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & u_m & u_m^2 & \cdots & u_m^d \end{bmatrix}}_{:=\mathbf{U}_{d+1}}_{m \times (d+1)} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_d \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}.$$

The matrix \mathbf{U}_{d+1} is of a full column rank since it consists of the first $d + 1$ columns of the so-called $m \times m$ Vandermonde matrix which is nonsingular, $\det(\mathbf{U}_m) = \prod_{1 \leq i < j \leq m} (u_j - u_i) \neq 0$.

Regularized least-squares problem

The regularized least-squares (RLS) problem has the form

$$(RLS) : \min_{x \in \mathbb{R}^n} \left\{ \|Ax - b\|^2 + \lambda R(x) \right\}.$$

The positive constant λ is the regularization parameter. In many cases, the regularization is taken to be quadratic. In particular, $R(x) = \|Dx\|^2$, where $D \in \mathbb{R}^{p \times n}$ is a given matrix. Then we have

$$\min_{x \in \mathbb{R}^n} \left\{ f_{RLS}(x) := x^\top (A^\top A + \lambda D^\top D)x - 2(A^\top b)^\top x + \|b\|^2 \right\}.$$

Since the Hessian of the objective function is

$$\nabla^2 f_{RLS}(x) = 2(A^\top A + \lambda D^\top D) \succeq 0,$$

any stationary point is a global minimum point (cf. Theorem 2.38). The stationary points are those satisfying $\nabla f(x) = 0$, that is

$$(A^\top A + \lambda D^\top D)x = A^\top b.$$

Therefore, if $A^\top A + \lambda D^\top D \succ 0$ then the RLS solution is given by

$$x_{RLS} = (A^\top A + \lambda D^\top D)^{-1} A^\top b.$$

Example of regularized least-squares solution

Let $A \in \mathbb{R}^{3 \times 3}$ be given by

$$A = \begin{bmatrix} 2 + 10^{-3} & 3 & 4 \\ 3 & 5 + 10^{-3} & 7 \\ 4 & 7 & 10 + 10^{-3} \end{bmatrix}.$$

```
B = [1, 1, 1; 1, 2, 3];
A=B'*B + 0.001*eye(3); % cond(A) ≈ 16000 is rather large!
```

The “true” vector was chosen to be $x_{true} = (1, 2, 3)^\top$, and b is a noisy measurement of Ax_{true} :

```
>> x_true = [1; 2; 3];
>> randn('seed', 315);
>> b = A*x_true + 0.01*randn(3, 1)
b =
20.0019
34.0004
48.0202
```

Example of regularized least-squares solution (cont'd)

The matrix A is in fact of a full column rank since its eigenvalues are all positive (`eig(A)`). The least-squares solution x_{LS} is given by

```
>> A\b
ans =
4.5446
-5.1295
6.5742
```

Note that x_{LS} is rather far from the true vector x_{true} . We will add the quadratic regularization function $\|Ix\|^2$. The regularized solution is

$$x_{RLS} = (A^\top A + \lambda I)^{-1} A^\top b. \quad (\text{we take } \lambda = 1 \text{ below})$$

```
>> x_rls = (A' * A + eye(3)) \ (A' * b)
x_rls =
1.1763
2.0318
2.8872
```

which is a much better estimate for x_{true} than x_{LS} .

Denoising

Suppose that a noisy measurement of a signal $x \in \mathbb{R}^n$ is given

$$\mathbf{b} = \mathbf{x} + \mathbf{w},$$

where x is an unknown signal, w is an unknown noise vector, and b is the known measurement vector. The denoising problem is to find a “good” estimate of x . The associated least-squares problem is

$$\min_{x \in \mathbb{R}^n} \|x - b\|^2.$$

The optimal solution of this problem is obviously $x = b$, which is meaningless. We will add a regularization term $\lambda \sum_{i=1}^{n-1} (x_i - x_{i+1})^2$,

$$\min_{x \in \mathbb{R}^n} \left\{ \|Ix - b\|^2 + \lambda \|Lx\|^2 \right\},$$

where parameter $\lambda > 0$ and $L \in \mathbb{R}^{(n-1) \times n}$ is given by

$$L := \begin{bmatrix} 1 & -1 & & & \\ & 1 & -1 & & \\ & & \ddots & \ddots & \\ & & & 1 & -1 \end{bmatrix}.$$

The optimal solution is given by $\mathbf{x}_{RLS}(\lambda) = (I + \lambda L^\top L)^{-1} \mathbf{b}$.

Example

Consider the signal $x \in \mathbb{R}^{300}$ constructed by

```
t = linspace(0, 4, 300)';
x = sin(t) + t.*cos(t).^2;
randn('seed', 314);
b = x + 0.05*randn(300, 1);
subplot(1, 2, 1);
plot(1:300, x, 'LineWidth', 2);
subplot(1, 2, 2);
plot(1:300, b, 'LineWidth', 2);
```

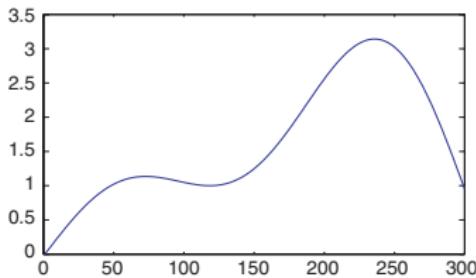
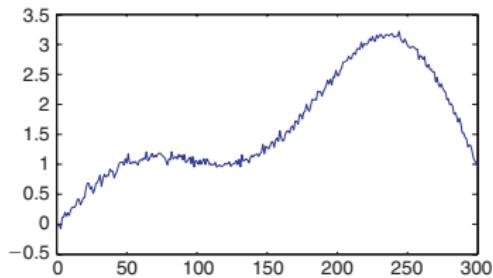
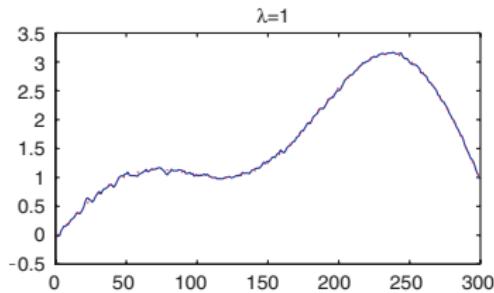
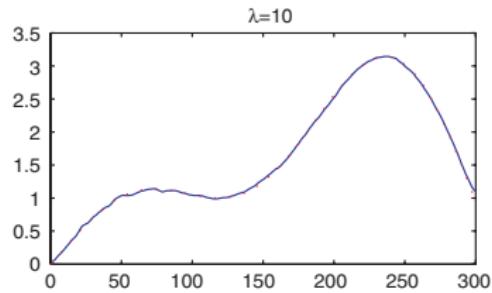
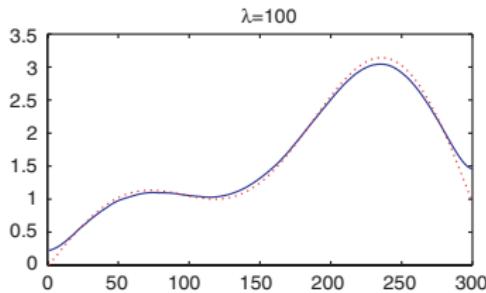
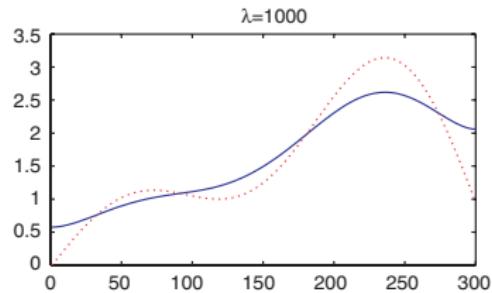


Figure 3.2. A signal (left image) and its noisy version (right image).

Example (cont'd): $\lambda = 1, 10, 100, 1000$



signal x : marked with red dot

Nonlinear least-squares problem

Suppose that we are given a system of nonlinear equations:

$$f_i(\mathbf{x}) \approx c_i, \quad i = 1, 2, \dots, m.$$

The nonlinear least-squares (NLS) problem is formulated as

$$\min_{\mathbf{x} \in \mathbb{R}^n} \sum_{i=1}^m (f_i(\mathbf{x}) - c_i)^2.$$

The Gauss-Newton method is specifically devised to solve NLS problems of the form, but the method is not guaranteed to converge to the global optimal solution but rather to a stationary point (see §4.5).

Circle fitting

Suppose that we are given m points $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m \in \mathbb{R}^n$. The circle fitting problem seeks to find a circle with center \mathbf{x} and radius r ,

$$C(\mathbf{x}, r) := \{\mathbf{y} \in \mathbb{R}^n : \|\mathbf{y} - \mathbf{x}\| = r\},$$

that best fits the m points. The nonlinear (approximate) equations associated with the problem are

$$\|\mathbf{x} - \mathbf{a}_i\| \approx r, \quad i = 1, 2, \dots, m.$$

Since we wish to deal with differentiable functions, we will consider the squared version

$$\|\mathbf{x} - \mathbf{a}_i\|^2 \approx r^2, \quad i = 1, 2, \dots, m.$$

The NLS problem associated with these equations is

$$\min_{\mathbf{x} \in \mathbb{R}^n, r \geq 0} \sum_{i=1}^m (\|\mathbf{x} - \mathbf{a}_i\|^2 - r^2)^2$$

Equivalent to a linear LS problem

The above NLS problem is the same as

$$\min \left\{ \sum_{i=1}^m \left(-2\mathbf{a}_i^\top \mathbf{x} + \|\mathbf{x}\|^2 - r^2 + \|\mathbf{a}_i\|^2 \right)^2 : \mathbf{x} \in \mathbb{R}^n, r \in \mathbb{R} \right\}.$$

Making the change of variables $R := \|\mathbf{x}\|^2 - r^2$, it reduces to

$$\min_{\mathbf{x} \in \mathbb{R}^n, R \in \mathbb{R}} \left\{ f(\mathbf{x}, R) := \sum_{i=1}^m \left(-2\mathbf{a}_i^\top \mathbf{x} + R + \|\mathbf{a}_i\|^2 \right)^2 : \|\mathbf{x}\|^2 \geq R \right\}.$$

Indeed, any optimal solution $(\hat{\mathbf{x}}, \hat{R})$ automatically satisfies $\|\hat{\mathbf{x}}\|^2 \geq \hat{R}$, since otherwise, if $\|\hat{\mathbf{x}}\|^2 < \hat{R}$, we would have for $i = 1, 2, \dots, m$,

$$-2\mathbf{a}_i^\top \hat{\mathbf{x}} + \hat{R} + \|\mathbf{a}_i\|^2 > -2\mathbf{a}_i^\top \hat{\mathbf{x}} + \|\hat{\mathbf{x}}\|^2 + \|\mathbf{a}_i\|^2 = \|\hat{\mathbf{x}} - \mathbf{a}_i\|^2 \geq 0.$$

Squaring both sides and summing over i yield

$$\begin{aligned} f(\hat{\mathbf{x}}, \hat{R}) &= \sum_{i=1}^m \left(-2\mathbf{a}_i^\top \hat{\mathbf{x}} + \hat{R} + \|\mathbf{a}_i\|^2 \right)^2 \\ &> \sum_{i=1}^m \left(-2\mathbf{a}_i^\top \hat{\mathbf{x}} + \|\hat{\mathbf{x}}\|^2 + \|\mathbf{a}_i\|^2 \right)^2 = f(\hat{\mathbf{x}}, \|\hat{\mathbf{x}}\|^2). \end{aligned}$$

This is a contradiction, since $(\hat{\mathbf{x}}, \hat{R})$ is an optimal solution.

Equivalent to a linear LS problem (cont'd)

Finally, we have the *linear* least-squares problem:

$$\min_{\mathbf{y} \in \mathbb{R}^{n+1}} \|\tilde{\mathbf{A}}\mathbf{y} - \mathbf{b}\|^2,$$

where $\mathbf{y} = (\mathbf{x}, R)^\top$ and

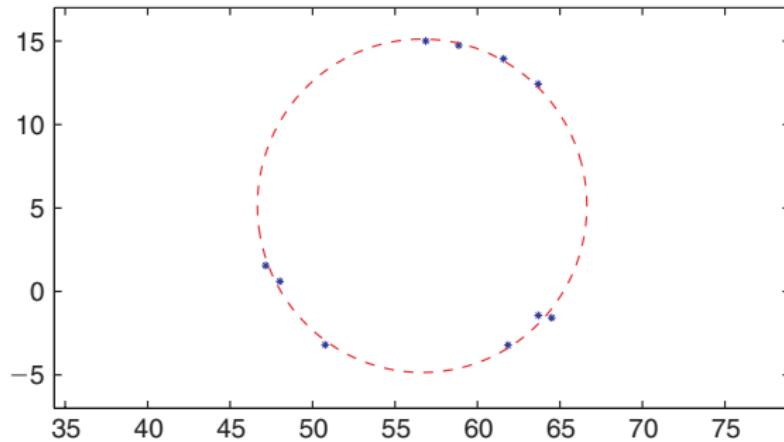
$$\tilde{\mathbf{A}} = \begin{bmatrix} 2\mathbf{a}_1^\top & -1 \\ 2\mathbf{a}_2^\top & -1 \\ \vdots & \vdots \\ 2\mathbf{a}_m^\top & -1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \|\mathbf{a}_1\|^2 \\ \|\mathbf{a}_2\|^2 \\ \vdots \\ \|\mathbf{a}_m\|^2 \end{bmatrix}.$$

If $\tilde{\mathbf{A}}$ is of full column rank, then the unique solution is

$$\mathbf{y} = (\tilde{\mathbf{A}}^\top \tilde{\mathbf{A}})^{-1} \tilde{\mathbf{A}}^\top \mathbf{b},$$

and the radius r is given by $r = \sqrt{\|\mathbf{x}\|^2 - R}$.

Example: the best circle fitting of 10 points



The best circle fitting of 10 points denoted by asterisks