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Convex optimization problem

Definition: (general form) A convex optimization problem (convex
problem) is a problem consisting of minimizing a convex function over
a convex set in the form:

min f (x) subject to x ∈ C,

where C is a convex set and f is a convex function over C.

Definition: (convex optimization problems in functional form)

min f (x)
subject to gi(x) ≤ 0, i = 1, 2, · · · , m,

hj(x) = 0, j = 1, 2, · · · , p,

where f , g1, · · · , gm : Rn → R are convex functions and h1, · · · , hp :
Rn → R are affine functions.

Note: The above problem does fit into the general form. In fact,

C =
(
∩m

i=1Lev(gi, 0)
)
∩
(
∩p

j=1{x : hj(x) = 0}
)

is convex and closed, since gi, hj are continuous on Rn and the inverse
images of closed sets under continuous functions are closed sets.
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“local = global” in convex optimization problem

Theorem (local = global): Let f : C ⊆ Rn → R be a convex function
defined over the convex set C. Let x∗ ∈ C be a local minimum of f over
C. Then x∗ is a global minimum of f over C.
Proof: Since x∗ ∈ C is a local minimum of f over C, ∃ r > 0 such that f (x) ≥ f (x∗)
for any x ∈ C∩ B[x∗, r]. Let x∗ ̸= y ∈ C and λ ∈ (0, 1] such that
x∗ + λ(y− x∗) ∈ B[x∗, r]. Since x∗ + λ(y− x∗) ∈ B[x∗, r] ∩ C, it follows that

f (x∗) ≤ f (x∗ + λ(y− x∗)) ≤ (1− λ)f (x∗) + λf (y).

Thus λf (x∗) ≤ λf (y), and then f (x∗) ≤ f (y). □

Theorem: Let f : C ⊆ Rn → R be a strictly convex function defined
over the convex set C. Let x∗ ∈ C be a local minimum of f over C.
Then x∗ is a strict global minimum of f over C.

Definition: The optimal set of the convex optimization problem is the
set of all minimizers, that is, X∗ := argmin{f (x) : x ∈ C}.
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Convexity of the optimal set in convex optimization

Theorem: Let f : C ⊆ Rn → R be a convex function defined over the
convex set C. Then the set X∗ of optimal solutions of the problem
min{f (x) : x ∈ C} is convex. If, in addition, f is strictly convex over C,
then there exists at most one optimal solution.

Proof: If X∗ = ∅, then the result follows trivially.

Assume that X∗ ̸= ∅ and denote the optimal value by f ∗. Let x, y ∈ X∗

and λ ∈ [0, 1]. Then

f (λx + (1− λ)y) ≤ λf ∗ + (1− λ)f ∗ = f ∗.

Hence, λx + (1− λ)y ∈ C is also an optimal solution and
λx + (1− λ)y ∈ X∗, establishing the convexity of X∗.

Assume that f is strictly convex over C and X∗ ̸= ∅. To show that X∗ is
a singleton, suppose in contradiction that there exist x, y ∈ X∗ such that
x ̸= y. Then 1

2 x + 1
2 y ∈ X∗ ⊆ C and

f (
1
2

x +
1
2

y) <
1
2

f (x) +
1
2

f (y) =
1
2

f ∗ +
1
2

f ∗ = f ∗,

which is a contradiction to the fact that f ∗ is the optimal value. □
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Maximizing concave functions over convex sets

Note: Convex optimization problems consist of minimizing convex
functions over convex sets, but we will also refer to problems consisting
of maximizing concave functions over convex sets as convex problems.

Example: The following problem is a convex problem:

min(−2x + y) subject to x2 + y2 ≤ 3.

The objective function is linear and thus convex, and the single
inequality constraint is the level set Lev(f , 0) of the convex
function f (x, y) = x2 + y2 − 3 and hence convex.

Example: The following problem is nonconvex:

min(x2 − y) subject to x2 + y2 = 3.

The objective function is convex, but the constraint is a nonlinear
equality constraint and therefore nonconvex. Note that the feasible
set is the boundary of the ball with center (0, 0) and radius

√
3.
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Linear programming

A linear programming (LP) problem is an optimization problem
consisting of minimizing a linear objective function subject to
linear equalities and inequalities:

min c⊤x s.t. Ax ≤ b, Bx = g,

where x, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, B ∈ Rp×n, and g ∈ Rp.
We remark here that for a vector z ≥ 0 we mean zi ≥ 0 for all i.

Linear functions are both convex and concave. Consider the LP
problem (called the “standard formulation” in the literature):

max c⊤x s.t. Ax = b, x ≥ 0,

a problem of maximizing a concave (convex) function over a
convex set. From Theorem 7.42, if the feasible set is nonempty and
compact, then ∃ at least one optimal solution which is an extreme point
of the feasible set (⇒ a basic feasible solution, if A has linearly
independent rows). A more general result dropping the
“compactness assumption” is called the fundamental theorem of
linear programming.
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Convex quadratic problems

Convex quadratic problems are problems consisting of minimizing a convex
quadratic function subject to affine constraints. A general form of problems
of this class can be written as

min x⊤Qx + 2b⊤x s.t. Ax ≤ c,

where 0 ⪯ Q ∈ Rn×n, b ∈ Rn, A ∈ Rm×n, and c ∈ Rm.

Classification via linear separators:
Suppose that we are given two types of points in Rn: (type A) x1, x2,
· · · , xm, (type B) xm+1, xm+2, · · · , xm+p. The objective is to find a linear
separator, which is a hyperplane, H(w, β) := {x ∈ Rn : w⊤x + β = 0},
for which the type A and type B points are in its opposite sides:

w⊤xi + β < 0, 1 ≤ i ≤ m, w⊤xi + β > 0, m + 1 ≤ i ≤ m + p.

Our underlying assumption is that the two sets of points are linearly
separable, i.e., the set of inequalities has a solution.

The problem is not well-defined in the sense that there are many linear
separators, and what we seek is in fact a separator that is in a sense
farthest as possible from all the points.
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Classification via linear separators

Margin of the separator: the distance of the separator from the
closest point, as illustrated in figure below. Therefore, we have

margin := min
i=1,2,··· ,m+p

|w⊤xi + β|
∥w∥ .
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Figure 8.2. The optimal linear seperator and its margin.

We therefore conclude that the margin corresponding to a hyperplane H (w,−β)
(w �= 0) is

min
i=1,2,...,m+p

|wT xi +β|
‖w‖ .

So far, the problem that we consider is therefore

max
:

mini=1,2,...,m+p
|wT xi+β|
‖w‖

;

s.t. wT xi +β< 0, i = 1,2, . . . , m,
wT xi +β> 0, i = m+ 1, m+ 2, . . . , m+ p.

This is a rather bad formulation of the problem since it is not convex and cannot be easily
handled. Our objective is to find a convex reformulation of the problem. For that, note
that the problem has a degree of freedom in the sense that if (w,β) is an optimal solution,
then so is any nonzero multiplier of it, that is, (αw,αβ) for α �= 0. We can therefore
decide that

min
i=1,2,...,m+p

|wT xi +β|= 1,

and the problem can then be rewritten as

max
�

1
‖w‖
	

s.t. mini=1,2,...,m+p |wT xi +β|= 1,
wT xi +β< 0, i = 1,2, . . . , m,
wT xi +β> 0, i = m+ 1,2, . . . , m+ p.

The combination of the first equality and the other inequality constraints implies that a
valid reformulation is

min 1
2‖w‖2

s.t. mini=1,2,...,m+p |wT xi +β|= 1,
wT xi +β≤−1, i = 1,2, . . . , m,
wT xi +β≥ 1, i = m+ 1,2, . . . , m+ p,

The separation problem will thus consist of finding the separator with
the largest margin:

max
w,β

{ 1
∥w∥ min

i=1,2,··· ,m+p
|w⊤xi + β|

}
s.t. w⊤xi + β < 0, 1 ≤ i ≤ m,

w⊤xi + β > 0, m + 1 ≤ i ≤ m + p.
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Classification via linear separators (cont’d)

This is a bad formulation of the problem since it is not convex.

Note that the problem has a degree of freedom in the sense that
if (w, β) is an optimal solution, then so is (αw, αβ) for α > 0. The
problem can then be rewritten as

max
w,β

1
∥w∥

s.t. min
i=1,2,··· ,m+p

|w⊤xi + β| = 1,

w⊤xi + β < 0, 1 ≤ i ≤ m, w⊤xi + β > 0, m + 1 ≤ i ≤ m + p.

The combination of the first equality and the other inequality
constraints implies that a valid reformulation is

min
w,β

1
2
∥w∥2

s.t. min
i=1,2,··· ,m+p

|w⊤xi + β| = 1,

w⊤xi + β ≤ −1, 1 ≤ i ≤ m, w⊤xi + β ≥ 1, m + 1 ≤ i ≤ m + p.
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Classification via linear separators (cont’d)

In the above, we also used the fact that maximizing 1/∥w∥ is the
same as minimizing 1

2∥w∥2 in the sense that the optimal set
stays the same.

Finally, we remove the problematic “min” equality constraint
and obtain the following convex quadratic reformulation:

min
w,β

1
2
∥w∥2

s.t. w⊤xi + β ≤ −1, 1 ≤ i ≤ m,

w⊤xi + β ≥ 1, m + 1 ≤ i ≤ m + p.

The removal of the “min” constraint is valid since any feasible
solution of problem satisfies mini=1,2,··· ,m+p |w⊤xi + β| ≥ 1.

If (w, β) is an optimal solution, then equality must be satisfied. Otherwise, if
min

i=1,2,··· ,m+p
|w⊤xi + β| > 1, then a better solution (with lower objective

function value) will be 1
α (w, β), where α = min

i=1,2,··· ,m+p
|w⊤xi + β| > 1.
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Chebyshev center of a set of points

Suppose that we are given m points a1, a2, · · · , am in Rn. The
objective is to find the center of the minimum radius closed ball
containing all the points. This ball is called the Chebyshev ball and
the corresponding center is the Chebyshev center.

Let r be the radius and x be the center. The problem can be
written as “ minx,r r s.t. ai ∈ B[x, r], i = 1, 2, · · · , m′′. That is,

min
x,r

r s.t. ∥ai − x∥ ≤ r, i = 1, 2, · · · , m.

This is a convex problem since it consists of minimizing a linear
function subject to convex inequality constraints.
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where we also used the fact that maximizing 1
‖w‖ is the same as minimizing ‖w‖2 in the

sense that the optimal set stays the same. Finally, we remove the problematic “min” equal-
ity constraint and obtain the following convex quadratic reformulation of the problem:

min 1
2‖w‖2

s.t. wT xi +β≤−1, i = 1,2, . . . , m,
wT xi +β≥ 1, i = m+ 1, m+ 2, . . . , m+ p.

(8.6)

The removal of the “min” constraint is valid since any feasible solution of problem
(8.6) surely satisfies mini=1,2,...,m+p |wT xi + β| ≥ 1. If (w,β) is in addition optimal,
then equality must be satisfied. Otherwise, if mini=1,2,...,m+p |wT xi + β| > 1, then a
better solution (i.e., with lower objective function value) will be 1

α (w,β), where α =
mini=1,2,...,m+p |wT xi +β|.

8.2.4 Chebyshev Center of a Set of Points

Suppose that we are given m points a1,a2, . . . ,am in�n . The objective is to find the center
of the minimum radius closed ball containing all the points. This ball is called the Cheby-
shev ball and the corresponding center is the Chebyshev center. In mathematical terms, the
problem can be written as (r denotes the radius and x is the center)

minx,r r
s.t. ai ∈ B[x, r ], i = 1,2, . . . , m.

Of course, recalling that B[x, r ] = {y : ‖y− x‖ ≤ r }, it follows that the problem can be
written as

minx,r r
s.t. ‖x− ai‖ ≤ r, i = 1,2, . . . , m. (8.7)

This is obviously a convex optimization problem since it consists of minimizing a linear
(and hence convex) function subject to convex inequality constraints: the function ‖x−
ai‖− r is convex as a sum of a translation of the norm function and the linear function
−r . An illustration of the Chebyshev center and ball is given in Figure 8.3.
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Figure 8.3. The Chebyshev center (denoted by a diamond marker) of a set of 10 points (aster-
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Hidden convexity in trust region subproblems

There are several situations in which a certain problem is not
convex but nonetheless can be recast as a convex optimization
problem, called “hidden convexity.”

The trust region subproblem consists of minimizing a quadratic
function (not necessarily convex) subject to an Euclidean norm
constraint:

(TRS) min{x⊤Ax + 2b⊤x + c : ∥x∥2 ≤ 1},

where b ∈ Rn, c ∈ R, and A ∈ Rn×n symmetric matrix which is
not necessarily positive semidefinite.

Since the objective function is (possibly) nonconvex, problem (TRS) is
(possibly) nonconvex. This is an important class of problems
arising, for example, as a subroutine in trust region methods,
hence the name of this class of problems.
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Transforming TRS into a convex optimization problem

By the spectral decomposition theorem, ∃ an orthogonal matrix
U and a diagonal matrix D = diag(d1, d2, · · · , dn) such that
A = UDU⊤, and TRS can be rewritten as

(TRS) min{x⊤UDU⊤x + 2b⊤UU⊤x + c : ∥U⊤x∥2 ≤ 1},

where ∥U⊤x∥ = ∥x∥. Let y = U⊤x, we have

min{y⊤Dy + 2b⊤Uy + c : ∥y∥2 ≤ 1}.

Denoting v = (v1, v2, · · · , vn) := U⊤b, we obtain

min
( n

∑
i=1

diy2
i + 2

n

∑
i=1

viyi + c
)

s.t.
n

∑
i=1

y2
i ≤ 1.

The problem is still nonconvex, since some of the di’s might be < 0.
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A Lemma

Lemma: Let y∗ be an optimal solution of the above problem, then viy∗i ≤ 0,
for all i = 1, 2, · · · , n.

Proof: Denote the objective function by

f (y) :=
n

∑
j=1

djy2
j + 2

n

∑
j=1

vjyj + c.

Fixed an index i ∈ {1, 2, · · · , n}, we define the vector

ỹj =

{
y∗j , j ̸= i,
−y∗j , j = i, for j = 1, 2, · · · , n.

Then ỹ = (ỹ1, ỹ2, · · · , ỹn)⊤ is a feasible solution. Since y∗ is an optimal
solution, f (y∗) ≤ f (ỹ), which is the same as

n

∑
j=1

dj(y∗j )
2 + 2

n

∑
j=1

vjy∗j + c ≤
n

∑
j=1

dj(ỹj)
2 + 2

n

∑
j=1

vjỹj + c.

Thus, we have 2viy∗i ≤ 2vi(−y∗i ), which implies that viy∗i ≤ 0. □
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Transforming TRS into a convex optimization problem

By the Lemma, for any optimal solution y∗, sgn(y∗i ) = −sgn(vi)
when vi ̸= 0, where the sgn function is defined to be

sgn(x) =
{

1, x ≥ 0,
−1, x < 0.

When vi = 0, we have the property that both y∗ and ỹ are
optimal. Hence the sign of y∗i can be chosen arbitrarily. As a
consequence, we can make the change of variables
yi = −sgn(vi)

√
zi, zi ≥ 0, and the problem (page 13) becomes

min
( n

∑
i=1

dizi − 2
n

∑
i=1
|vi|
√

zi + c
)

s.t.
n

∑
i=1

zi ≤ 1, z1, z2, · · · , zn ≥ 0.

This is a convex optimization problem since the constraints are linear
and the objective function is a sum of linear terms and positive
multipliers of the convex functions −√zi.
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Orthogonal projection operator

Definition: Given a nonempty closed convex set C, the orthogonal
projection operator PC : Rn → C is defined by

PC(x) := argmin{∥y− x∥2 : y ∈ C}. (⋆)

In other words, the orthogonal projection operator with input x
returns the vector in C that is closest to x. Thus, we have the
distance function d(x, C) := miny∈C ∥x− y∥ = ∥x− PC(x)∥.
The orthogonal projection operator is defined as a solution of a
convex optimization problem, specifically, a minimization of a
convex quadratic function subject to a convex feasibility set.

Theorem: (first projection theorem) Let C be a nonempty closed
convex set. Then problem (⋆) has a unique optimal solution.
Proof: Since the objective function in (⋆) is a quadratic function with a positive
definite matrix, it follows that it is coercive and hence that the problem has at
least one optimal solution (Theorem 2.32). Since the objective function is strictly
convex, it follows that there exists only one optimal solution. □
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Projection on the nonnegative orthant

Computing the orthogonal projection operator might be a
difficult task. Below are some examples of simple sets.

Let C = Rn
+. To compute the orthogonal projection of x ∈ Rn

onto C, we need to solve the convex optimization problem:

min
n

∑
i=1

(yi − xi)
2, s.t. y1, y2, · · · , yn ≥ 0.

Since this problem is separable, meaning that the objective function is a
sum of functions of each of the variables, and the constraints are
separable in the sense that each of the variables has its own constraint,
it follows that the ith component of the optimal solution y∗ is the
optimal solution of the problem

min{(yi − xi)
2 : yi ≥ 0}.

Thus, the solution is given by y∗i = [xi]+ := xi if xi ≥ 0 and 0 if
xi < 0. Therefore, PRn

+
(x) = [x]+ := ([x1]+, [x2]+, · · · , [xn]+)⊤.
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Projection on boxes

A box is a subset of Rn of the form

B = [ℓ1, u1]× [ℓ2, u2]× · · · × [ℓn, un] = {x ∈ Rn : ℓi ≤ xi ≤ ui}.

We will also allow some of the ui’s to be equal to ∞ and some of
the ℓi’s to be equal to −∞, and in these cases we will assume that
∞ or −∞ are not actually contained in the intervals.

A similar separability argument as the one used in the previous
example, one can show that the orthogonal projection is given
by y := (y1, y2, · · · , yn)⊤ = PB(x), where for i = 1, 2, · · · , n,

yi =

 ui, xi ≥ ui,
xi, ℓi < xi < ui,
ℓi, xi ≤ ℓi.
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Projection onto balls

Let C = B[0, r] = {y ∈ Rn : ∥y∥ ≤ r}. The minimization problem
is given by

min{∥y− x∥2︸ ︷︷ ︸
:=f (y)

: ∥y∥2 ≤ r2}.

If ∥x∥ ≤ r, then y = x is the optimal solution.

When ∥x∥ > r, the optimal solution must belong to the
boundary of the ball since otherwise, ∇f (y) = 0⇒ 2(y− x) = 0
⇒ y = x ̸∈ C. (→←) Therefore, the minimization problem is
equivalent to

min{∥y− x∥2 : ∥y∥2 = r2},
or equivalently

min{−2x⊤y+ r2 + ∥x∥2 : ∥y∥2 = r2}, or min{−2x⊤y : ∥y∥2 = r2}.
By the CS inequality, −2x⊤y ≥ −2∥x∥∥y∥ = −2r∥x∥, and this
lower bound is attained at y = r x

∥x∥ .

Thus, PB[0,r](x) = x if ∥x∥ ≤ r and PB[0,r](x) = r x
∥x∥ if ∥x∥ > r.
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CVX: a MATLAB-based modeling system

CVX is a MATLAB-based modeling system for convex
optimization problems. It was created by Michael Grant and
Stephen Boyd.

A comprehensive and complete guide can be found at the CVX
website http://CVXr.com

The basic structure of a CVX program is as follows:

cvx begin

{variables declaration}
minimize({objective function})

or maximize({objective function})
subject to

{constraints}

cvx end
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