

MA3111: Mathematical Image Processing

Variational Image Segmentation

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University
Jhongli District, Taoyuan City 320317, Taiwan

First version: June 09, 2021/Last updated: July 2, 2025

Outline of “variational image segmentation”

In this lecture, we will give a brief introduction to the topics:

- *The energy-based models for image segmentation: the Mumford-Shah model and the Chan-Vese model based on the level set formulation.*
- *An efficient iterative thresholding method for model implementation.*

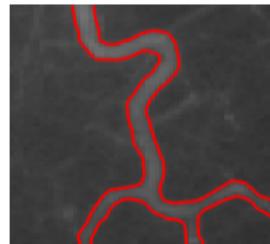
The material of this lecture is mainly based on

- P. Getreuer, Chan-Vese segmentation, *Image Processing On Line*, 2 (2012), pp. 214-224.
- D. Wang, H. Li, X. Wei, X.-P. Wang (王筱平), An efficient iterative thresholding method for image segmentation, *Journal of Computational Physics*, 350 (2017), pp. 657-667.

Image segmentation in medical imaging



f & initialization \mathcal{C}



segmented image

In what follows, Ω denotes an open bounded subset in \mathbb{R}^2 and $f : \overline{\Omega} \rightarrow \mathbb{R}$ denotes the given grayscale image to be segmented.

Mumford-Shah model (CPAM 1989)

Mumford-Shah model: it finds a piecewise smooth function u and a curve set \mathcal{C} , which separates the image domain into disjoint regions, minimizing the energy functional:

$$\min_{u, \mathcal{C}} \left(\mu |\mathcal{C}| + \lambda \int_{\Omega} (f(x) - u(x))^2 dx + \int_{\Omega \setminus \mathcal{C}} |\nabla u(x)|^2 dx \right),$$

where $|\mathcal{C}|$ denotes the total length of the curves in \mathcal{C} .

- The first term plays the regularization role, which ensures the target objects can tightly be wrapped by \mathcal{C} .
- The second term is the data fidelity term, which forces u to be close to the input image f .
- The third term is the smoothing term, which forces the target function u to be piecewise smooth within each of the regions separated by the curves in \mathcal{C} .
- $\mu > 0, \lambda > 0$ are tuning parameters to modulate these three terms.

Simplified Mumford-Shah model

- *The non-convexity of energy functional in the Mumford-Shah model* makes the minimization problem difficult to analyze and the computational cost is much considerable.
- The piecewise smooth model suffers for its *sensitivity to the initialization of \mathcal{C}* .
- **Simplified Mumford-Shah model:** it finds *a piecewise constant function u* and a curve set \mathcal{C} to minimize the energy functional:

$$\min_{u, \mathcal{C}} \left(\mu |\mathcal{C}| + \int_{\Omega} (f(x) - u(x))^2 dx \right).$$

Note that u is constant on each connected component of $\Omega \setminus \mathcal{C}$.
The minimization problem is still non-convex.

Chan (陳繁昌)-Vese two-phase model

In 1999, Chan and Vese proposed a two-phase segmentation model based on the level set formulation (“active contours without edges”, LNCS 1999):

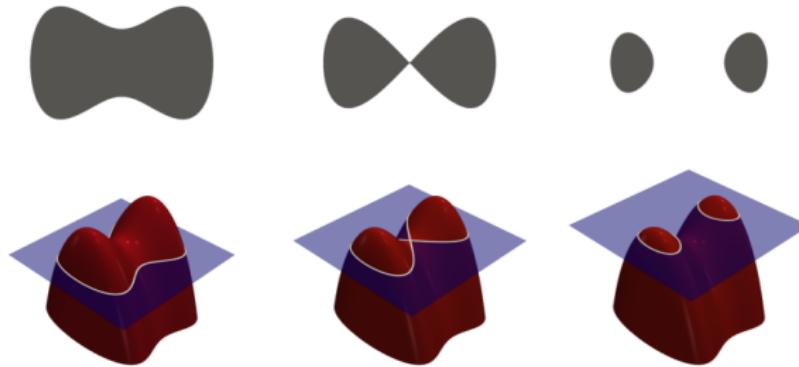
$$\min_{c_1, c_2, \mathcal{C}} \left(\mu |\mathcal{C}| + \nu |\Omega_{\text{in}}| + \lambda_1 \int_{\Omega_{\text{in}}} (f(x) - c_1)^2 dx + \lambda_2 \int_{\Omega_{\text{out}}} (f(x) - c_2)^2 dx \right).$$

- Ω_{in} represents the region enclosed by and contains the curves in \mathcal{C} with area $|\Omega_{\text{in}}|$, and $\Omega_{\text{out}} := \Omega \setminus \Omega_{\text{in}}$.
- $\mu > 0$, $\nu \geq 0$, $\lambda_1 > 0$, and $\lambda_2 > 0$ are tuning parameters (actually, one of them can be fixed as 1).
- Chan-Vese model finds a piecewise constant function u and a curve set \mathcal{C} to minimize the energy functional, where u has only two constant values,

$$u(x) = \begin{cases} c_1, & x \text{ is inside } \mathcal{C}, \\ c_2, & x \text{ is outside } \mathcal{C}. \end{cases}$$

Topological changes of \mathcal{C}

To solve the minimization problem of Chan-Vese model, we evolve \mathcal{C} and find c_1, c_2 to minimize the energy functional. However, it is generally hard to handle *topological changes* of the curves in \mathcal{C} .



(quoted from wikipedia)

Level set function

Therefore, we represent \mathcal{C} implicitly by the zero level contour of a level set function $\phi : \overline{\Omega} \rightarrow \mathbb{R}$, i.e.,

$$\mathcal{C} = \{x \in \overline{\Omega} : \phi(x) = 0\}.$$

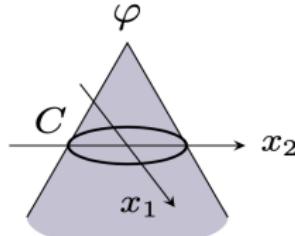
The zero level contour \mathcal{C} partitions the image domain into two disjoint regions Ω_{in} and Ω_{out} such that

$$\phi(x) \geq 0 \text{ for } x \in \Omega_{\text{in}} \text{ and } \phi(x) < 0 \text{ for } x \in \Omega_{\text{out}}.$$

For example, given $r > 0$, we define a level set function, which is a *signed distance function*,

$$\phi(x) = \phi(x, y) = r - \sqrt{x^2 + y^2},$$

whose zero level contour is the circle of radius $r > 0$.



Chan-Vese model

- Let H denote the Heaviside function and δ the Dirac delta function. Then

$$H(s) = \begin{cases} 1 & s \geq 0, \\ 0 & s < 0, \end{cases} \quad \text{and} \quad \frac{d}{ds}H(s) = \delta(s).$$

- In terms of H , δ , and the level set function ϕ , the Chan-Vese model has the form

$$\begin{aligned} \min_{c_1, c_2, \phi} & \left(\mu \int_{\Omega} \delta(\phi(x)) |\nabla \phi(x)| dx + \nu \int_{\Omega} H(\phi(x)) dx \right. \\ & + \lambda_1 \int_{\Omega} (f(x) - c_1)^2 H(\phi(x)) dx \\ & \left. + \lambda_2 \int_{\Omega} (f(x) - c_2)^2 (1 - H(\phi(x))) dx \right). \end{aligned}$$

Original formulation:

$$\min_{c_1, c_2, \mathcal{C}} \left(\mu |\mathcal{C}| + \nu |\Omega_{\text{in}}| + \lambda_1 \int_{\Omega_{\text{in}}} (f(x) - c_1)^2 + \lambda_2 \int_{\Omega_{\text{out}}} (f(x) - c_2)^2 \right).$$

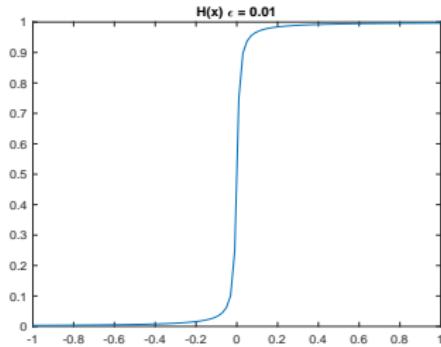
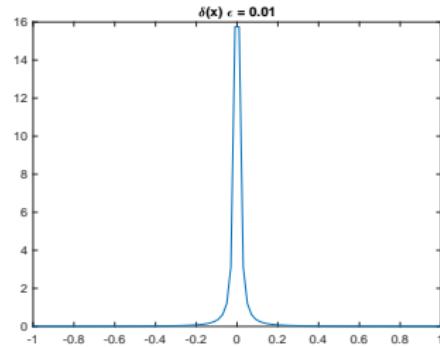
The regularized Heaviside and delta functions

The Heaviside function H and the Dirac delta function δ can be approximately regularized as follows: for a sufficiently small $\epsilon > 0$,

$$H_\epsilon(t) := \frac{1}{2} \left(1 + \frac{2}{\pi} \tan^{-1} \left(\frac{t}{\epsilon} \right) \right),$$

$$\delta_\epsilon(t) := \frac{d}{dt} H_\epsilon(t) = \frac{\epsilon}{\pi(\epsilon^2 + t^2)},$$

$$\int_{-\infty}^{\infty} \delta_\epsilon(t) dt = \int_{-\infty}^{\infty} \frac{\epsilon}{\pi(\epsilon^2 + t^2)} dt = \dots = 1.$$



Total length of \mathcal{C}

The first term of the energy functional is the length of \mathcal{C} , which can be expressed as the total variation of $H(\phi)$,

$$\begin{aligned} |\mathcal{C}| &= \int_{\Omega} \delta(\phi(x)) |\nabla \phi(x)| dx = \int_{\Omega} \left| \frac{dH}{d\phi}(\phi(x)) \right| |\nabla \phi(x)| dx \\ &= \int_{\Omega} |\nabla H(\phi(x))| dx. \end{aligned}$$

A heuristic argument to prove $|\mathcal{C}| = \int_{\Omega} \delta(\phi(x)) |\nabla \phi(x)| dx$:

Suppose that the level set function ϕ is a signed distance function, i.e.,

$$\phi(x) = \begin{cases} d(x, \mathcal{C}) & \text{if } x \in \Omega_{\text{in}}, \\ -d(x, \mathcal{C}) & \text{if } x \in \Omega_{\text{out}}. \end{cases}$$

Then $\phi(x)$ is differentiable almost everywhere and $|\nabla \phi(x)| = 1$ for $x \in \overline{\Omega}$ a.e. The contour \mathcal{C} can be parametrized in arc length s , $z(s) = (x(s), y(s))$ for $0 \leq s \leq L := |\mathcal{C}|$. Let $N \gg 1$ be a large integer. We approximate the Dirac δ -function by

$$\delta_N(t) := \begin{cases} N, & |t| \leq \frac{1}{2N}, \\ 0, & \text{otherwise.} \end{cases}$$

Total length of \mathcal{C} : a heuristic argument (cont'd)

Let B_N be the narrow band defined by

$$B_N := \{x \in \overline{\Omega} : |\phi(x)| \leq 1/(2N)\}.$$

Then we have

$$\int_{\Omega} \delta(\phi(x)) |\nabla \phi(x)| dx \approx N \int_{B_N} |\nabla \phi(x)| dx.$$

The “centerline” of this band B_N is the curve $\mathcal{C} = \{x \in \overline{\Omega} : \phi(x) = 0\}$.

Consider a point $p = z(s) \in \mathcal{C}$. Then the tangent vector and the normal vector are $z'(s) = (x'(s), y'(s))$ and $\nabla \phi(z(s))$, respectively. Starting at p in the direction $\nabla \phi(p)$, we reach the boundary of B_N when we have traversed the length $h > 0$ such that $|\nabla \phi(p)|h = \frac{1}{2N}$. It follows that near $p = z(s)$ the width $\rho(s)$ of this band is approximately given by

$$\rho(s) = 2h = \frac{1}{N|\nabla \phi(z(s))|} = \frac{1}{N}.$$

Therefore we have

$$\int_{\Omega} \delta(\phi(x)) |\nabla \phi(x)| dx \approx N \int_{B_N} |\nabla \phi(x)| dx \approx N \int_0^L \rho(s) ds = L = |\mathcal{C}|.$$

An alternating iterative scheme

The minimization is solved by *an alternating iterative scheme*, i.e., alternately updating c_1 , c_2 and ϕ .

(S1) Fixed ϕ , the optimal values of c_1 and c_2 are the region averages,

$$c_1 = \frac{\int_{\Omega} f(x) H(\phi(x)) dx}{\int_{\Omega} H(\phi(x)) dx}, \quad c_2 = \frac{\int_{\Omega} f(x) (1 - H(\phi(x))) dx}{\int_{\Omega} (1 - H(\phi(x))) dx}.$$

(S2) Fixed c_1 , c_2 , we solve the initial-boundary value problem (IBVP) to reach a steady-state:

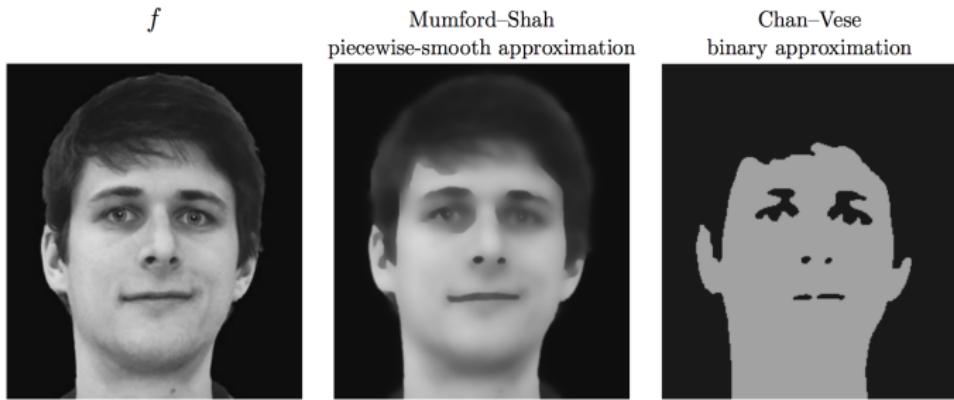
$$\frac{\partial \phi}{\partial t} = \delta_{\epsilon}(\phi) \left(\mu \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|} - \nu - \lambda_1(f - c_1)^2 + \lambda_2(f - c_2)^2 \right),$$

for $t > 0, x \in \Omega,$

$$\phi(0, x) = \phi_0(x), x \in \Omega,$$

$$\frac{\partial \phi}{\partial n} = 0 \text{ on } \partial\Omega, t \geq 0.$$

Example: Mumford-Shah vs. Chan-Vese



P. Getreuer, Chan-Vese segmentation,
Image Processing On Line, 2 (2012), pp. 214-224.

Numerical implementation

- Assume that the image domain $\overline{\Omega}$ is the unit square $[0, 1] \times [0, 1]$.
- Let $\Omega_D := \{(x_i, y_j) \mid i, j = 0, 1, \dots, M\}$ be the set of grid points of a uniform partition of $\overline{\Omega}$ with size $h = 1/M$.
- Then $x_i = ih$ and $y_j = jh$, $i, j = 0, 1, \dots, M$. Let $\phi_{i,j}(t)$ be the spatial difference approximation to $\phi(t, x_i, y_j)$.
- Let $t_n = n\Delta t$, $n \geq 0$, and $\Delta t > 0$ be the time step, and let $\phi_{i,j}^n$ be the full difference approximation to $\phi(t_n, x_i, y_j)$.

Discrete differential operators and BC

- Define the discrete differential operators: for $1 \leq i, j \leq M - 1$,

$$\nabla_x^+ \phi_{i,j} = \frac{\phi_{i+1,j} - \phi_{i,j}}{h}, \text{ (forward difference)}$$

$$\nabla_x^- \phi_{i,j} = \frac{\phi_{i,j} - \phi_{i-1,j}}{h}, \text{ (backward difference)}$$

$$\nabla_y^+ \phi_{i,j} = \frac{\phi_{i,j+1} - \phi_{i,j}}{h}, \text{ (forward difference)}$$

$$\nabla_y^- \phi_{i,j} = \frac{\phi_{i,j} - \phi_{i,j-1}}{h}, \text{ (backward difference)}$$

$$\nabla_x^0 \phi_{i,j} := \left(\frac{\nabla_x^+ + \nabla_x^-}{2} \right) \phi_{i,j}, \quad \nabla_y^0 \phi_{i,j} := \left(\frac{\nabla_y^+ + \nabla_y^-}{2} \right) \phi_{i,j}.$$

(central differences)

- Discretize the homogeneous Neumann BC: $\frac{\partial \phi}{\partial n} = 0$ on $\partial\Omega$

$$\phi_{0,j} = \phi_{1,j}, \quad \phi_{M,j} = \phi_{M-1,j}, \quad \phi_{i,0} = \phi_{i,1}, \quad \phi_{i,M} = \phi_{i,M-1}.$$

Finite difference discretization: spatial variables

Performing the spatial discretization [Getreuer-2012], we have

$$\frac{\partial \phi_{i,j}}{\partial t} = \delta_\epsilon(\phi_{i,j}) \left\{ \mu \left(\nabla_x^- \frac{\nabla_x^+ \phi_{i,j}}{\sqrt{\eta^2 + (\nabla_x^+ \phi_{i,j})^2 + (\nabla_y^0 \phi_{i,j})^2}} \right. \right. \\ \left. \left. + \nabla_y^- \frac{\nabla_y^+ \phi_{i,j}}{\sqrt{\eta^2 + (\nabla_x^0 \phi_{i,j})^2 + (\nabla_y^+ \phi_{i,j})^2}} \right) \right. \\ \left. - \nu - \lambda_1 (f_{i,j} - c_1)^2 + \lambda_2 (f_{i,j} - c_2)^2 \right\},$$

where $i, j = 1, 2, \dots, M - 1$.

The purpose of small positive parameter η in the denominators prevents division by zero.

Spatial discretization

Define

$$\begin{aligned} A_{i,j} &= \frac{\mu}{\sqrt{\eta^2 + (\nabla_x^+ \phi_{i,j})^2 + (\nabla_y^0 \phi_{i,j})^2}}, \\ B_{i,j} &= \frac{\mu}{\sqrt{\eta^2 + (\nabla_x^0 \phi_{i,j})^2 + (\nabla_y^+ \phi_{i,j})^2}}. \end{aligned}$$

Using the fact $\nabla_x^+ \phi_{i,j} = \frac{\phi_{i+1,j} - \phi_{i,j}}{h}$, $\nabla_y^+ \phi_{i,j} = \frac{\phi_{i,j+1} - \phi_{i,j}}{h}$ and taking the backward difference at $A_{i,j}(\phi_{i+1,j} - \phi_{i,j})$ and $B_{i,j}(\phi_{i,j+1} - \phi_{i,j})$, then the discretization can be written as

$$\begin{aligned} \frac{\partial \phi_{i,j}}{\partial t} &= \delta_\epsilon(\phi_{i,j}) \left\{ \frac{1}{h^2} \left(A_{i,j}(\phi_{i+1,j} - \phi_{i,j}) - A_{i-1,j}(\phi_{i,j} - \phi_{i-1,j}) \right) \right. \\ &\quad + \frac{1}{h^2} \left(B_{i,j}(\phi_{i,j+1} - \phi_{i,j}) - B_{i,j-1}(\phi_{i,j} - \phi_{i,j-1}) \right) \\ &\quad \left. - \nu - \lambda_1(f_{i,j} - c_1)^2 + \lambda_2(f_{i,j} - c_2)^2 \right\}. \end{aligned}$$

Temporal discretization

Define

$$\begin{aligned}\tilde{A}_{i,j} &= \frac{1}{h^2} A_{i,j}, & \tilde{A}_{i-1,j} &= \frac{1}{h^2} A_{i,j}, \\ \tilde{B}_{i,j} &= \frac{1}{h^2} B_{i,j}, & \tilde{B}_{i,j-1} &= \frac{1}{h^2} B_{i,j-1}.\end{aligned}$$

Time is discretized with a semi-implicit Gauss-Seidel method, values $\phi_{i,j}, \phi_{i-1,j}, \phi_{i,j-1}$ are evaluated at time t_{n+1} and all others at time t_n .

$$\begin{aligned}\frac{\phi_{i,j}^{n+1} - \phi_{i,j}^n}{\Delta t} &= \delta_\epsilon(\phi_{i,j}^n) \left\{ \tilde{A}_{i,j} \phi_{i+1,j}^n + \tilde{A}_{i-1,j} \phi_{i-1,j}^{n+1} + \tilde{B}_{i,j} \phi_{i,j+1}^n + \tilde{B}_{i,j-1} \phi_{i,j-1}^{n+1} \right. \\ &\quad \left. - \left(\tilde{A}_{i,j} + \tilde{A}_{i-1,j} + \tilde{B}_{i,j} + \tilde{B}_{i,j-1} \right) \phi_{i,j}^{n+1} \right. \\ &\quad \left. - \nu - \lambda_1 (f_{i,j} - c_1)^2 + \lambda_2 (f_{i,j} - c_2)^2 \right\}.\end{aligned}$$

Gauss-Seidel scheme

This allows ϕ at time t_{n+1} to be solved by one Gauss-Seidel *sweep from left to right, bottom to top*:

$$\begin{aligned}\phi_{i,j}^{n+1} &= \left\{ \phi_{i,j}^n + \Delta t \delta_\epsilon(\phi_{i,j}^n) \left(\tilde{A}_{i,j} \phi_{i+1,j}^n + \tilde{A}_{i-1,j} \phi_{i-1,j}^{n+1} + \tilde{B}_{i,j} \phi_{i,j+1}^n \right. \right. \\ &\quad \left. \left. + \tilde{B}_{i,j-1} \phi_{i,j-1}^{n+1} - \nu - \lambda_1 (f_{i,j} - c_1)^2 + \lambda_2 (f_{i,j} - c_2)^2 \right) \right\} \\ &\quad \times \left\{ 1 + \Delta t \delta_\epsilon(\phi_{i,j}) \left(\tilde{A}_{i,j} + \tilde{A}_{i-1,j} + \tilde{B}_{i,j} + \tilde{B}_{i,j-1} \right) \right\}^{-1},\end{aligned}$$

where

$$\begin{aligned}\tilde{A}_{i,j} &= \frac{\mu}{h^2 \sqrt{\eta^2 + \left((\phi_{i+1,j}^n - \phi_{i,j}^n)/h \right)^2 + \left((\phi_{i,j+1}^n - \phi_{i,j-1}^{n+1})/(2h) \right)^2}}, \\ \tilde{B}_{i,j} &= \frac{\mu}{h^2 \sqrt{\eta^2 + \left((\phi_{i+1,j}^n - \phi_{i-1,j}^{n+1})/(2h) \right)^2 + \left((\phi_{i,j}^n - \phi_{i+1,j}^n)/h \right)^2}}.\end{aligned}$$

Gauss-Seidel scheme

We can rewrite $\tilde{A}_{i,j}$ and $\tilde{B}_{i,j}$ as follows:

$$\begin{aligned}\tilde{A}_{i,j} &= \frac{\mu}{h^2 \sqrt{\eta^2 + \left((\phi_{i+1,j}^n - \phi_{i,j}^n)/h \right)^2 + \left((\phi_{i,j+1}^n - \phi_{i,j-1}^{n+1})/(2h) \right)^2}}, \\ &= \frac{(\mu/h)}{\sqrt{(h\eta)^2 + (\phi_{i+1,j}^n - \phi_{i,j}^n)^2 + \left((\phi_{i,j+1}^n - \phi_{i,j-1}^{n+1})/2 \right)^2}}, \\ \tilde{B}_{i,j} &= \frac{\mu}{h^2 \sqrt{\eta^2 + \left((\phi_{i+1,j}^n - \phi_{i-1,j}^{n+1})/(2h) \right)^2 + \left((\phi_{i,j}^n - \phi_{i+1,j}^n)/h \right)^2}} \\ &= \frac{(\mu/h)}{\sqrt{(h\eta)^2 + \left((\phi_{i+1,j}^n - \phi_{i-1,j}^{n+1})/2 \right)^2 + (\phi_{i,j}^n - \phi_{i+1,j}^n)^2}}.\end{aligned}$$

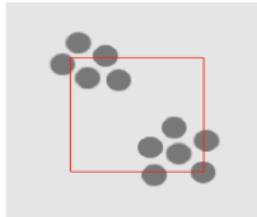
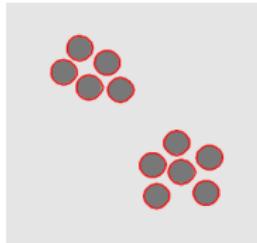
In numerical implementation, we take $(h\eta) = 10^{-8}$.

Numerical experiments

initial contour

initial contour

initial contour



An iterative thresholding scheme

- Most image segmentation models incorporate *the level set formulation* for solving the associated minimization problems. It generally results in initial-boundary value problems for PDEs.
- We are going to employ an *iterative thresholding (IT) scheme* for multi-phase image segmentation based on the Chan-Vese model.
- In the IT scheme, total length of \mathcal{C} is approximated by a non-local multi-phase energy constructed based on *convolution of the heat kernel with the characteristic functions of regions*.
- The IT scheme is divided into two steps. *It works by alternating a thresholding step with an averaging step.*

The approximate Chan-Vese functional

Let $f : \overline{\Omega} \rightarrow \mathbb{R}$ be the given grayscale image to be segmented.

- Suppose f approximately takes n distinct constants c_1, \dots, c_n in the disjoint regions $\Omega_1, \dots, \Omega_n$ (*n-phase partition*) with boundaries $\mathcal{C}_1, \dots, \mathcal{C}_n$, respectively, that separate Ω .

Let $\mathcal{C} = \cup_{i=1}^n \mathcal{C}_i$. Then $\Omega \setminus \mathcal{C} = \cup_{i=1}^n \Omega_i$.

- Let χ_i be the characteristic function of the desirable region Ω_i ,

$$\chi_i(x) = \begin{cases} 1 & x \in \Omega_i, \\ 0 & \text{otherwise,} \end{cases} \quad \text{and} \quad \sum_{i=1}^n \chi_i = 1 \text{ in } \Omega \setminus \mathcal{C}.$$

- Let $\chi = (\chi_1, \chi_2, \dots, \chi_n)$. We define the set \mathcal{S} of the characteristic vector functions by

$$\mathcal{S} = \left\{ \chi \in (BV(\Omega))^n : \chi_i(x) \in \{0, 1\}, \sum_{i=1}^n \chi_i(x) = 1 \ \forall x \in \Omega \setminus \mathcal{C} \right\},$$

where $BV(\Omega)$ is the usual bounded variation space.

The approximate Chan-Vese functional (cont'd)

In [WLWW-JCP2017], the authors considered the following model:

$$\min_{\{\Omega_i\}, \{c_i\}} \sum_{i=1}^n \left(\lambda |\mathcal{C}_i| + \int_{\Omega_i} (f(\mathbf{x}) - c_i)^2 d\mathbf{x} \right).$$

Let $\mathbf{c} := (c_1, c_2, \dots, c_n)$. Then we look for χ^* and \mathbf{c}^* such that

$$(\chi^*, \mathbf{c}^*) = \arg \min_{\chi \in \mathcal{S}, \mathbf{c} \in \mathbb{R}^n} \sum_{i=1}^n \left(\lambda |\mathcal{C}_i| + \int_{\Omega} \chi_i(\mathbf{x}) g_i(\mathbf{x}) d\mathbf{x} \right),$$

where

$$g_i(\mathbf{x}) := (f(\mathbf{x}) - c_i)^2.$$

The length of \mathcal{C}_i

Let $0 < \tau \ll 1$. Define the heat kernel G_τ by

$$G_\tau(\mathbf{x}) := \frac{1}{4\pi\tau} \exp\left(-\frac{\|\mathbf{x}\|_2^2}{4\tau}\right).$$

Then the length of $\mathcal{C}_i \cap \mathcal{C}_j$ can be approximated by (see CPAM-2015)

$$|\mathcal{C}_i \cap \mathcal{C}_j| \approx \sqrt{\frac{\pi}{\tau}} \int_{\Omega} \chi_i(\mathbf{x}) G_\tau(\mathbf{x}) * \chi_j(\mathbf{x}) \, d\mathbf{x},$$

where $*$ represents the convolution operation, and therefore

$$|\mathcal{C}_i| \approx \sum_{j=1, j \neq i}^n \sqrt{\frac{\pi}{\tau}} \int_{\Omega} \chi_i(\mathbf{x}) G_\tau(\mathbf{x}) * \chi_j(\mathbf{x}) \, d\mathbf{x}.$$

S. Esedoḡlu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions, *Communications on Pure and Applied Mathematics*, 68 (2015), pp. 808-864.

The approximate energy functional and ICT scheme

The total energy functional can be approximated by

$$\mathcal{E}_\tau(\chi, c) = \sum_{i=1}^n \left(\lambda \sum_{j=1, j \neq i}^n \sqrt{\frac{\pi}{\tau}} \int_{\Omega} \chi_i(x) G_\tau(x) * \chi_j(x) dx + \int_{\Omega} \chi_i(x) g_i(x) dx \right),$$

and our goal is to solve the following minimization problem:

$$(\chi^*, c^*) = \arg \min_{\chi \in \mathcal{S}, c \in \mathbb{R}^n} \mathcal{E}_\tau(\chi, c).$$

The minimization problem can be solved by the ICT scheme, i.e., alternatively updating χ and c . Suppose that we have the k -th iterations for $k \geq 0$, $\chi^{(k)} = (\chi_1^{(k)}, \chi_2^{(k)}, \dots, \chi_n^{(k)})$ and $c^{(k)}$, then find $\chi^{(k+1)} \in \mathcal{S}$ and $c^{(k+1)} \in \mathbb{R}^n$ sequentially such that

$$\chi^{(k+1)} = \arg \min_{\chi \in \mathcal{S}} \mathcal{E}_\tau(\chi, c^{(k)}),$$

$$c^{(k+1)} = \arg \min_{c \in \mathbb{R}^n} \mathcal{E}_\tau(\chi^{(k+1)}, c).$$

The c -subproblem

Note that the energy functional is given by

$$\mathcal{E}_\tau(\chi, c) = \sum_{i=1}^n \left(\lambda \sum_{j=1, j \neq i}^n \sqrt{\frac{\pi}{\tau}} \int_{\Omega} \chi_i(x) G_\tau(x) * \chi_j(x) dx + \int_{\Omega} \chi_i(x) g_i(x) dx \right).$$

Then

$$\min_{c \in \mathbb{R}^n} \mathcal{E}_\tau(\chi^{(k+1)}, c) = \min_{c \in \mathbb{R}^n} \int_{\Omega} \chi_i^{(k+1)}(x) (f(x) - c_i)^2 dx$$

Letting

$$\frac{\partial}{\partial c_i} \int_{\Omega} \chi_i^{(k+1)}(x) (f(x) - c_i)^2 dx = 0,$$

we have

$$-2 \int_{\Omega} \chi_i^{(k+1)}(x) (f(x) - c_i) dx = 0 \implies c_i = \frac{\int_{\Omega} \chi_i^{(k+1)}(x) f(x) dx}{\int_{\Omega} \chi_i^{(k+1)}(x) dx}.$$

The χ -subproblem

Consider the χ -subproblem:

$$\chi^{(k+1)} = \arg \min_{\chi \in \mathcal{S}} \mathcal{E}_\tau(\chi, c^{(k)}).$$

Note that the minimization problem is a non-convex problem since the characteristic function set \mathcal{S} is not a convex set. In order to circumvent this drawback, we define the convex hull \mathcal{K} of \mathcal{S} by

$$\mathcal{K} = \left\{ \chi \in (BV(\Omega))^n : 0 \leq \chi_i(x) \leq 1, \sum_{i=1}^n \chi_i(x) = 1 \ \forall x \in \Omega \setminus \mathcal{C} \right\}.$$

Then we consider the convex relaxed minimization problem instead:

$$\min_{\chi \in \mathcal{K}} \mathcal{E}_\tau(\chi, c^{(k)}).$$

The χ -subproblem (cont'd)

In [WLWW-JCP2017], the authors proved that:

Assume that $\chi^* \in \mathcal{K}$ is a minimizer of $\mathcal{E}_\tau(\chi, \mathbf{c}^{(k)})$ on \mathcal{K} , i.e.,

$$\mathcal{E}_\tau(\chi^*, \mathbf{c}^{(k)}) = \min_{\chi \in \mathcal{K}} \mathcal{E}_\tau(\chi, \mathbf{c}^{(k)}).$$

Then $\chi^* \in \mathcal{S}$ and hence it is also a minimizer of $\mathcal{E}_\tau(\chi, \mathbf{c}^{(k)})$ on \mathcal{S} , i.e.,

$$\mathcal{E}_\tau(\chi^*, \mathbf{c}^{(k)}) = \min_{\chi \in \mathcal{S}} \mathcal{E}_\tau(\chi, \mathbf{c}^{(k)}).$$

Another approach is to show that $\mathcal{E}_\tau(\chi, \mathbf{c}^{(k)})$ is a concave functional on the convex set \mathcal{K} . Then minimizers can only be attained at the boundary points of the convex set \mathcal{K} , i.e., the subset \mathcal{S} .

How to solve the χ -subproblem

Linearizing $\mathcal{E}_\tau(\chi, \mathbf{c}^{(k)})$ at $\chi^{(k)}$, we obtain

$$\begin{aligned}\mathcal{E}_\tau(\chi, \mathbf{c}^{(k)}) &\approx \mathcal{E}_\tau(\chi^{(k)}, \mathbf{c}^{(k)}) + \sum_{i=1}^n \int_{\Omega} \frac{\delta \mathcal{E}_\tau}{\delta \chi_i} \Big|_{\chi=\chi^{(k)}} \left(\chi_i(\mathbf{x}) - \chi_i^{(k)}(\mathbf{x}) \right) d\mathbf{x} \\ &:= \mathcal{E}_\tau(\chi^{(k)}, \mathbf{c}^{(k)}) + \sum_{i=1}^n \int_{\Omega} \varphi_i^{(k)}(\mathbf{x}) \left(\chi_i(\mathbf{x}) - \chi_i^{(k)}(\mathbf{x}) \right) d\mathbf{x},\end{aligned}$$

where function $\varphi_i^{(k)}$ is given by

$$0 \leq \varphi_i^{(k)}(\mathbf{x}) := 2\lambda \sqrt{\frac{\pi}{\tau}} \sum_{j=1, i \neq j}^n G_\tau(\mathbf{x}) * \chi_j^{(k)}(\mathbf{x}) + g_i^{(k)}(\mathbf{x}).$$

How to solve the χ -subproblem (cont'd)

Dropping the constant terms in $\mathcal{E}_\tau(\chi, \mathbf{c}^{(k)})$, then the χ -subproblem becomes

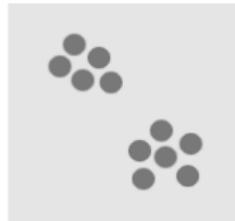
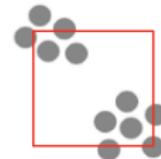
$$\chi^{(k+1)} = \arg \min_{\chi \in \mathcal{K}} \sum_{i=1}^n \int_{\Omega} \varphi_i^{(k)}(\mathbf{x}) \chi_i(\mathbf{x}) d\mathbf{x}.$$

Because $\varphi_i^{(k)}(\mathbf{x}) \geq 0$ and $\chi_i(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \Omega$, the minimizer $\chi^{(k+1)}$ of the above problem can be easily attained at

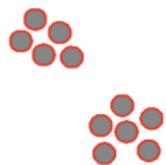
$$\chi_i^{(k+1)}(\mathbf{x}) = \begin{cases} 1, & \text{if } \varphi_i^{(k)}(\mathbf{x}) = \min_{1 \leq \ell \leq n} \varphi_\ell^{(k)}(\mathbf{x}), \\ 0, & \text{otherwise,} \end{cases}$$

for $i = 1, 2, \dots, n$ and $\mathbf{x} \in \Omega \setminus \mathcal{C}$.

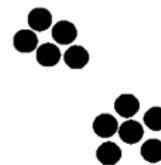
Numerical experiment #1



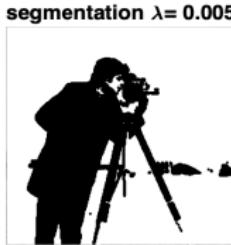
5 Iterations



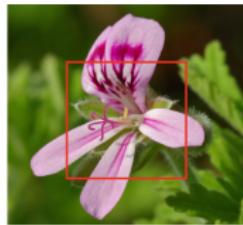
segmentation $\lambda = 0.002$



Numerical experiment #2



Numerical experiment #3



17 Iterations

segmentation $\lambda = 0.005$



Numerical experiment #4

