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Outline of “variational image segmentation”

In this lecture, we will give a brief introduction to the topics:

@ The energy-based models for image segmentation: the Mumford-Shah
model and the Chan-Vese model based on the level set formulation.

@ An efficient iterative thresholding method for model implementation.

The material of this lecture is mainly based on

@ P. Getreuer, Chan-Vese segmentation, Image Processing On Line, 2
(2012), pp. 214-224.

@ D. Wang, H. Li, X. Wei, X.-P. Wang (Ef%°F), An efficient iterative
thresholding method for image segmentation, Journal of
Computational Physics, 350 (2017), pp. 657-667.
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Image segmentation in medical imaging

f & initialization C  segmented image

In what follows, Q denotes an open bounded subset in IR? and
f : Q = R denotes the given grayscale image to be segmented.
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Mumford-Shah model (CPAM 1989)

Mumford-Shah model: it finds a piecewise smooth function 1 and a
curve set C, which separates the image domain into disjoint regions,
minimizing the energy functional:

r{}’icn (y‘C! + )\/Q(f(x) - u(x))2dx+ '/5\C|Vu(x)|2dx),

where |C| denotes the total length of the curves in C.

@ The first term plays the regularization role, which ensures the
target objects can tightly be wrapped by C.

@ The second term is the data fidelity term, which forces u to be
close to the input image f.

@ The third term is the smoothing term, which forces the target
function u to be piecewise smooth within each of the regions
separated by the curvesin C.

@ 11 >0, A > 0are tuning parameters to modulate these three terms.
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Simplified Mumford-Shah model

@ The non-convexity of energy functional in the Mumford-Shah model
makes the minimization problem difficult to analyze and the
computational cost is much considerable.

@ The piecewise smooth model suffers for its sensitivity to the
initialization of C.

@ Simplified Mumford-Shah model: it finds a piecewise constant
function u and a curve set C to minimize the energy functional:

r{},icn<y IC] —l—/ﬂ(f(x) —u(x))2dx).

Note that u is constant on each connected component of Q \ C.
The minimization problem is still non-convex.
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Chan (B % B)-Vese two-phase model

In 1999, Chan and Vese proposed a two-phase segmentation model
based on the level set formulation (“active contours without edges”,
LNCS 1999):

min (ju|C| +v|Qun| + s /Qm(f(x) — ) dx+ A /Qm(f(x) ~ ) ).

c1,62,C

@ (), represents the region enclosed by and contains the curves in
C with area |Qjp|, and Qout 1= Q \ Qjp.

@ u>0,v>0,A1 >0, and Ay > 0 are tuning parameters (actually,
one of them can be fixed as 1).

@ Chan-Vese model finds a piecewise constant function u and a
curve set C to minimize the energy functional, where u has only
two constant values,

u(x) = c1, xis inside C,
¢, x is outside C.
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Topological changes of C

To solve the minimization problem of Chan-Vese model, we evolve C
and find c1, ¢; to minimize the energy functional. However, it is
generally hard to handle topological changes of the curves in C.

9 oo

(quoted from wikipedia)
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Level set function

Therefore, we represent C implicitly by the zero level contour of a
level set function ¢ : 3 — R, i.e.,

C={xeQ: ¢(x)=0}.

The zero level contour C partitions the image domain into two
disjoint regions ()i, and Qgyt such that

¢(x) >0 for x € Oy, and ¢(x) <0 for x € Qout.

For example, given r > 0, we define a level set function, which is a
signed distance function,

¢(x) = ¢l y) =r— /22 +2

whose zero level contour is the circle of radius r > 0.
©

1
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Chan-Vese model

@ Let H denote the Heaviside function and ¢ the Dirac delta
function. Then
1 s>0, d B
H(s) = { 0 s<o, and %H(s) = 6(s).

@ In terms of H, §, and the level set function ¢, the Chan-Vese
model has the form

min (i 0(9(0)| V()| e +v || Hg(x))
1 [ () 1) Hip(x))dx
2 [ (Fx) —e2)’ (1~ H(p(x))) dx).
Original formulation:

min, (ju|C| +v|Qun| + M /Qm(f(x)_61)2+A2/('2m(f(x)—c2)2).

c1,2,C
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The regularized Heaviside and delta functions

The Heaviside function H and the Dirac delta function ¢ can be
approximately regularized as follows: for a sufficiently small € > 0,

1 2 1t
He(t) = E(l—i—;tan 1(5)),
d €
O0c(t) = —Hc(t) = —5—5
e(t) dt e(t) (€2 +12)’
) 00 e
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Total length of C

The first term of the energy functional is the length of C, which can be
expressed as the total variation of H(¢),

dH
c| = /5<¢<x>>w¢<x>|dx:/0|d )|V ) |dx
= /|VH ))|dx.
A heuristic argument to prove [C| = [, 5(¢(x))|V(x)|dx:

Suppose that the level set function ¢ is a signed dlstance function, i.e.,
d(x,C) ifx € Oy,
() = { —d(x,C) ifx € Qout.
Then ¢(x) is differentiable almost everywhere and |V¢(x)| = 1 forx € Q a.e.

The contour C can be parametrized in arc length s, z(s) = (x(s),y(s)) for
0 <s<L:=|C|. Let N > 1be a large integer. We approximate the Dirac

é-function by
N, |t < 5%,
On(t) = { 1< 2

0, otherwise.
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Total length of C: a heuristic argument (cont’d)

Let By be the narrow band defined by
By :={x€Q: |¢p(x)] <1/(2N)}.

Then we have
S o@EIVo@ldr =N [ V().

The “centerline” of this band By is the curve C = {x € Q: ¢(x) = 0}.
Consider a point p = z(s) € C. Then the tangent vector and the normal
vector are z/(s) = (¥/(s),y/(s)) and V¢(z(s)), respectively. Starting at p in the
direction V¢(p), we reach the boundary of By when we have traversed the
length i > 0 such that | V¢ (p)|h = 5. It follows that near p = z(s) the width
p(s) of this band is approximately given by

1 1

PE) =2 = NVpE)] ~ N

Therefore we have

. - g
S80I Vp@)ld =N [ [Vp@ldr~N [ p(s)ds = L= c].
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An alternating iterative scheme

The minimization is solved by an alternating iterative scheme, i.e.,
alternatingly updating cq, ¢ and ¢.

(S1) Fixed ¢, the optimal values of ¢; and ¢, are the region averages,

_ Jof@H@E) o f()(1 - H(E) dx
' QHpG) A T 7T (T H(p(x))dx

(52) Fixed c1, c3, we solve the initial-boundary value problem (IBVP)
to reach a steady-state:

] \Y%
a*(f e(¢)<MV %—V—Al(f—cl)hr/\z(f—cz)z)r
for t >0,x € Q),

$(0,x) = ¢o(x),x € O,

—¢—Oon80t>0
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Example: Mumford-Shah vs. Chan-Vese

f Mumford-Shah Chan—Vese
piecewise-smooth approximation binary approximation

A&

P. Getreuer, Chan-Vese segmentation,
Image Processing On Line, 2 (2012), pp. 214-224.
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Numerical implementation

@ Assume that the image domain () is the unit square [0,1] x [0,1].
@ Let Op := {(x;,yj)|i,j =0,1,--- ,M} be the set of grid points of
a uniform partition of Q with sizeh = 1/M.

@ Thenx; =ihand y; =jh,i,j=0,1,--- , M. Let 4)i,j(t) be the
spatial difference approximation to ¢(t, x;, ;).

@ Lett, = nAt,n > 0,and At > 0 be the time step, and let 47?,]- be
the full difference approximation to ¢(fn, x;, ;)
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Discrete differential operators and BC

@ Define the discrete differential operators: for 1 <1i,j <M —1,
(Pl+1,] (Pz,]

Vigij = ? , (forward difference)
Vigij = %, (backward difference)
V; ¢ij = w, (forward difference)
Vb = % (backward difference)
Vi+Vy Vi +V,

0 o 0 e ¥ Y

vx(l)i,j = (7)4)1,]1 vy‘l)i,j = (#)‘PL}
(central differences)
@ Discretize the homogeneous Neumann BC: g—i = 00n 90O

Poj = P10 Pmj=PMm-1j Pio = Pi1, Pim = Pim-1.

(© Suh-Yuh Yang (#57#8), Math. Dept., NCU, Taiwan Variational Image Segmentation — 16/36



Finite difference discretization: spatial variables

Performing the spatial discretization [Getreuer-2012], we have
a9y, Vi
atZ] = 56(4%,]-){ ( - ij —
\/’7 +(Vz (Pl,]) (vy‘i’i,j)
v 4)1 P )
\/’7 + x‘Pz,]) ( ;‘Pi,j)z

-V — Al(fi,j — C1)2 + /\Z(fi,j — Cz)Z},

wherei,j=1,2,--- ,M—1.

The purpose of small positive parameter 11 in the denominators prevents
division by zero.
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Spatial discretization

Define
H
Ajj = ,
\/172 + (VE¢ij)? + (Vi )2
Bij = K

\/’72 + (V9912 + (Vi ¢i)%

Using the fact Vi ¢;; = w, Vi i = w and taking the
backward difference at A; ;(¢;11; — ¢i;) and B; j(¢i;j+1 — ¢ij), then the
discretization can be written as

d¢; 1
at] = de(9i)) { 2 (Az’,j(4’z'+1,/ —¢ij) —Aii1,i(¢ij — ‘Pifl,j))

1
ti2 (Bi,j(<Pi,j+1 —¢ij) = Bij_1(¢ij — ‘Pi,jfl))

—V — /\1(fi,]' - C1)2 + /\Z(fi,j — Cz)z}.
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Temporal discretization

Define
~ 1 ~ 1
Ai,j = thAi’j, Ai—l,j = fthi,j,
_ 1 _ 1
Bij = 12Bij, Bij-1= 13Bij1-

Time is discretized with a semi-implicit Gauss-Seidel method, values
$ij, Pi—1j, $ij—1 are evaluated at time £,1 and all others at time ;.

n+1
— ¢}
Yij T Yij
A = 56(4’?,]‘){ Pl + Ao +B/]¢z,]+1+B,] 19750 5

- (Zi,j +Ai1j+Bij+ Ei,jfl) CPZ]-H

—V — Al(fi,j — Cl)z +/\2(fi,j — Cz)z}.
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Gauss-Seidel scheme

This allows ¢ at time ¢, 1 to be solved by one Gauss-Seidel sweep from
left to right, bottom to top:

gt = {q?ifj + Atde (i) (Ai,j¢fl+1,j + A1 ¢+ Bl
+§i,j7147z]t11 —v—M(fij— 1)+ A2 (fij — Cz)z) }

-1
{1+At56(¢1])< 11+Az 1]+BZJ+Bz] 1)} ’

where
Ai'f - le 2’
N 2+ (@ = #2) /) + (@l — el /)
By = #

i (- o))+ (0t ot ) /0)
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Gauss-Seidel scheme

We can rewrite Ai,j and Ei,j as follows:

A, = . :

hz\/ij + 1+1] "fj)/h) +((¢,‘rfj+1 (P?]Hl) (2 ))
_ (1/h) ,

\/(hﬂ)z (Pl — P>+ <(¢Zj+1 4’?]“1) >

B — K

K n+1 2
i+ (0 - oy )+ (i - ot )’

(u/h)

\/(hﬂ)z + ((4’;11] 4’7+11]) > + (9 — ¢lhq )

In numerical implementation, we take (hyy) = 1078,
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Numerical experiments

initial contour
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An iterative thresholding scheme

@ Most image segmentation models incorporate the level set
formulation for solving the associated minimization problems. It
generally results in initial-boundary value problems for PDEs.

@ We are going to employ an iterative thresholding (IT) scheme for
multi-phase image segmentation based on the Chan-Vese model.

@ In the IT scheme, total length of C is approximated by a
non-local multi-phase energy constructed based on convolution of
the heat kernel with the characteristic functions of regions.

@ The IT scheme is divided into two steps. It works by alternating a
thresholding step with an averaging step.
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The approximate Chan-Vese functional

Letf : O — R be the given grayscale image to be segmented.

@ Suppose f approximately takes n distinct constants ¢, - - -, ¢, in
the disjoint regions )y, - - -, ), (n-phase partition) with
boundaries Cy, - - - , Cy, respectively, that separate Q).

LetC = U’ C;. Then O\ C = U, Q).
@ Let x; be the characteristic function of the desirable region ();,

1 xe @

n
Xilx) = { 0 otherwise, and ZXi =1inO\C.

i=1

@ Let x = (x1,x2, - "+ , Xn)- We define the set S of the characteristic
vector functions by

S = {x € (BV(Q))": xi(x) € {0,1},ixi(x) —1Vxe Q\c},

where BV (Q)) is the usual bounded variation space.
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The approximate Chan-Vese functional (cont’d)

In [WLWW-JCP2017], the authors considered the following model:

) _ )2
) Z N+ | () — e d).
Letc:= (c1,¢2, -+ ,¢n). Then we look for x* and ¢* such that
n .
(x*,c*) = argmin Z()\\C,-| + / Xi(x)gi(x) dx),
XES,ceR™ =1 JQ

where

gi(x) == (f(x) — ;)™
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The length of C;

Let 0 < T < 1. Define the heat kernel G by

2
P50

Then the length of C; N C; can be approximated by (see CPAM-2015)

Gnglm T [ G xie)

where * represents the convolution operation, and therefore

|Ci| ~ \/7/ Xi(x)Gr(x *X}( x) dx.
= 1]#1

S. Esedoglu and F. Otto, Threshold dynamics for networks with
arbitrary surface tensions, Communications on Pure and Applied
Mathematics, 68 (2015), pp. 808-864.

Gr(x) :=
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The approximate energy functional and ICT scheme

The total energy functional can be approximated by

Er(x,€) = \F/ Xi(%)Gr(x) * x;(x dX+/xz )gi(x) dx),
i:1 j= 1];&1

and our goal is to solve the following minimization problem:

(x*,c*) = argmin & (x, ).
XES, ceR”
The minimization problem can be solved by the ICT scheme, i.e.,
alternatively updating x and c. Suppose that we have the k-th
iterations for k > 0, x(k) = ( )(( ), )(ék) L, X,(qk)) and ¢, then find

x**V) € S and ¢*+1) € R” sequentially such that

X(k+1) — argmingf(x,c<k>),
XES

k) — argmingf(x(kﬂ)/c)-
CEH{”
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The c-subproblem

Note that the energy functional is given by

V T /Xz )Gr(x *X] dx+/ Xi(x gz dx
7éz

Ex,c) = i A

j=1j

Then
- (k+1 +1 )2
min & (x = min / Xi ¢i)" dx

Letting

J (k+1) N2 gu

5 @@ e =0
we have

(k1) 4

Ja xfkﬂ)(x) dx
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The x-subproblem

Consider the x-subproblem:

41 — argmin & (x, c).

XES

X

Note that the minimization problem is a non-convex problem since
the characteristic function set S is not a convex set. In order to
circumvent this drawback, we define the convex hull K of S by

n
K= {x e (BV(Q))":0< xi(x) <1, Y_xi(x) =1Vx € Q\c}.
i=1
Then we consider the convex relaxed minimization problem instead:

min & (x, ¢®)).
xek
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The x-subproblem (cont’'d)

In [WLWW-JCP2017], the authors proved that:

Assume that x* € K is a minimizer of E(x, ¢™) on K, i.e.,

Er(x", c(k)) = min & (x, c(k)).
XEX

Then x* € S and hence it is also a minimizer of E+(x, c(k>) onS, ie.,

Ex*,c®) = min & (x, c¥).
XS

Another approach is to show that - (x, c¥)) is a concave functional
on the convex set K. Then minimizers can only be attained at the
boundary points of the convex set K, i.e., the subset S.
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How to solve the x-subproblem

Linearizing & (x, c(k)) at X(k), we obtain
E(x, c® ~ & )+ /
o(x,eV) Z -

= &)+ L [ o0 () —xfk) () dx,
i=1

557
Sxi

where function q)(k)

;s given by

T n
0< ol =207 Y Gl 0 + 500

J=Li#
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How to solve the x-subproblem (cont’d)

Dropping the constant terms in £¢(x, c(¥)), then the x-subproblem
becomes

(k1) _ 23 [ o® () d
X —argmmz Q(Pi (x)xi(x) dx.

xek =1
Because (pi(k) (x) > 0and x;(x) > 0 for all x € (), the minimizer x**1)
of the above problem can be easily attained at

Ry ()
) ) { L if g () = min 97 (x),

0, otherwise,

fori=1,2,--- ,nandx € O\ C.
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Numerical experiment #1

5 lterations
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Numerical experiment #2

segmentation A= 0.005
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Numerical experiment #3

segmentation A= 0.005
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Numerical experiment #4

23 Iterations segmentation A= 0.005
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