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Outline of “variational image segmentation”

In this lecture, we will give a brief introduction to the topics:

The energy-based models for image segmentation: the Mumford-Shah
model and the Chan-Vese model based on the level set formulation.

An efficient iterative thresholding method for model implementation.

The material of this lecture is mainly based on

P. Getreuer, Chan-Vese segmentation, Image Processing On Line, 2
(2012), pp. 214-224.

D. Wang, H. Li, X. Wei, X.-P. Wang (王筱平), An efficient iterative
thresholding method for image segmentation, Journal of
Computational Physics, 350 (2017), pp. 657-667.
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Image segmentation in medical imaging

f & initialization C segmented image

In what follows, Ω denotes an open bounded subset in R2 and
f : Ω→ R denotes the given grayscale image to be segmented.
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Mumford-Shah model (CPAM 1989)

Mumford-Shah model: it finds a piecewise smooth function u and a
curve set C, which separates the image domain into disjoint regions,
minimizing the energy functional:

min
u,C

(
µ
∣∣C∣∣+ λ

∫
Ω

(
f (x)− u(x)

)2 dx +
∫

Ω\C

∣∣∇u(x)
∣∣2 dx

)
,

where |C| denotes the total length of the curves in C.

The first term plays the regularization role, which ensures the
target objects can tightly be wrapped by C.

The second term is the data fidelity term, which forces u to be
close to the input image f .

The third term is the smoothing term, which forces the target
function u to be piecewise smooth within each of the regions
separated by the curves in C.

µ > 0, λ > 0 are tuning parameters to modulate these three terms.
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Simplified Mumford-Shah model

The non-convexity of energy functional in the Mumford-Shah model
makes the minimization problem difficult to analyze and the
computational cost is much considerable.

The piecewise smooth model suffers for its sensitivity to the
initialization of C.

Simplified Mumford-Shah model: it finds a piecewise constant
function u and a curve set C to minimize the energy functional:

min
u,C

(
µ
∣∣C∣∣+ ∫

Ω

(
f (x)− u(x)

)2 dx
)

.

Note that u is constant on each connected component of Ω \ C.
The minimization problem is still non-convex.
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Chan (陳陳陳繁繁繁昌昌昌)-Vese two-phase model

In 1999, Chan and Vese proposed a two-phase segmentation model
based on the level set formulation (“active contours without edges”,
LNCS 1999):

min
c1,c2,C

(
µ
∣∣C∣∣+ ν

∣∣Ωin
∣∣+ λ1

∫
Ωin

(
f (x)− c1

)2 dx + λ2

∫
Ωout

(
f (x)− c2

)2 dx
)

.

Ωin represents the region enclosed by and contains the curves in
C with area |Ωin|, and Ωout := Ω \Ωin.

µ > 0, ν ≥ 0, λ1 > 0, and λ2 > 0 are tuning parameters (actually,
one of them can be fixed as 1).

Chan-Vese model finds a piecewise constant function u and a
curve set C to minimize the energy functional, where u has only
two constant values,

u(x) =

{
c1, x is inside C,
c2, x is outside C.
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Topological changes of C

To solve the minimization problem of Chan-Vese model, we evolve C
and find c1, c2 to minimize the energy functional. However, it is
generally hard to handle topological changes of the curves in C.

(quoted from wikipedia)
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Level set function

Therefore, we represent C implicitly by the zero level contour of a
level set function φ : Ω→ R, i.e.,

C = {x ∈ Ω : φ(x) = 0}.
The zero level contour C partitions the image domain into two
disjoint regions Ωin and Ωout such that

φ(x) ≥ 0 for x ∈ Ωin and φ(x) < 0 for x ∈ Ωout.

For example, given r > 0, we define a level set function, which is a
signed distance function,

φ(x) = φ(x, y) = r−
√

x2 + y2,

whose zero level contour is the circle of radius r > 0.
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Chan-Vese model

Let H denote the Heaviside function and δ the Dirac delta
function. Then

H(s) =
{

1 s ≥ 0,
0 s < 0, and

d
ds

H(s) = δ(s).

In terms of H, δ, and the level set function φ, the Chan-Vese
model has the form

min
c1, c2, φ

(
µ
∫

Ω
δ(φ(x))|∇φ(x)| dx + ν

∫
Ω

H(φ(x)) dx

+λ1

∫
Ω

(
f (x)− c1

)2H(φ(x)) dx

+λ2

∫
Ω

(
f (x)− c2

)2(1−H(φ(x))
)

dx
)

.

Original formulation:

min
c1,c2,C

(
µ
∣∣C∣∣+ ν

∣∣Ωin
∣∣+ λ1

∫
Ωin

(
f (x)− c1

)2
+ λ2

∫
Ωout

(
f (x)− c2

)2
)

.
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The regularized Heaviside and delta functions

The Heaviside function H and the Dirac delta function δ can be
approximately regularized as follows: for a sufficiently small ε > 0,

Hε(t) :=
1
2

(
1 +

2
π

tan−1(
t
ε
)
)

,

δε(t) :=
d
dt

Hε(t) =
ε

π(ε2 + t2)
,∫ ∞

−∞
δε(t)dt =

∫ ∞

−∞

ε

π(ε2 + t2)
dt = · · · = 1.
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Total length of C

The first term of the energy functional is the length of C, which can be
expressed as the total variation of H(φ),∣∣C∣∣ =

∫
Ω

δ(φ(x))
∣∣∇φ(x)

∣∣dx =
∫

Ω

∣∣dH
dφ

(φ(x))
∣∣∣∣∇φ(x)

∣∣dx

=
∫

Ω
|∇H(φ(x))|dx.

A heuristic argument to prove |C| =
∫

Ω δ(φ(x))|∇φ(x)|dx:
Suppose that the level set function φ is a signed distance function, i.e.,

φ(x) =

{
d(x, C) if x ∈ Ωin,

−d(x, C) if x ∈ Ωout.

Then φ(x) is differentiable almost everywhere and |∇φ(x)| = 1 for x ∈ Ω a.e.
The contour C can be parametrized in arc length s, z(s) = (x(s), y(s)) for
0 ≤ s ≤ L := |C|. Let N � 1 be a large integer. We approximate the Dirac
δ-function by

δN(t) :=

{
N, |t| ≤ 1

2N ,

0, otherwise.
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Total length of C: a heuristic argument (cont’d)

Let BN be the narrow band defined by

BN := {x ∈ Ω : |φ(x)| ≤ 1/(2N)}.

Then we have ∫
Ω

δ(φ(x))|∇φ(x)|dx ≈ N
∫

BN

|∇φ(x)|dx.

The “centerline” of this band BN is the curve C = {x ∈ Ω : φ(x) = 0}.
Consider a point p = z(s) ∈ C. Then the tangent vector and the normal
vector are z′(s) = (x′(s), y′(s)) and ∇φ(z(s)), respectively. Starting at p in the
direction ∇φ(p), we reach the boundary of BN when we have traversed the
length h > 0 such that |∇φ(p)|h = 1

2N . It follows that near p = z(s) the width
ρ(s) of this band is approximately given by

ρ(s) = 2h =
1

N|∇φ(z(s))| =
1
N

.

Therefore we have∫
Ω

δ(φ(x))|∇φ(x)|dx ≈ N
∫

BN

|∇φ(x)|dx ≈ N
∫ L

0
ρ(s)ds = L = |C|.
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An alternating iterative scheme

The minimization is solved by an alternating iterative scheme, i.e.,
alternatingly updating c1, c2 and φ.

(S1) Fixed φ, the optimal values of c1 and c2 are the region averages,

c1 =

∫
Ω f (x)H(φ(x)) dx∫

Ω H(φ(x)) dx
, c2 =

∫
Ω f (x)

(
1−H(φ(x))

)
dx∫

Ω

(
1−H(φ(x))

)
dx

.

(S2) Fixed c1, c2, we solve the initial-boundary value problem (IBVP)
to reach a steady-state:

∂φ

∂t
= δε(φ)

(
µ∇ · ∇φ

|∇φ| − ν− λ1(f − c1)
2 + λ2(f − c2)

2
)

,

for t > 0, x ∈ Ω,

φ(0, x) = φ0(x), x ∈ Ω,

∂φ

∂n
= 0 on ∂Ω, t ≥ 0.
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Example: Mumford-Shah vs. Chan-Vese

P. Getreuer, Chan-Vese segmentation,
Image Processing On Line, 2 (2012), pp. 214-224.
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Numerical implementation

Assume that the image domain Ω is the unit square [0, 1]× [0, 1].

Let ΩD := {(xi, yj)| i, j = 0, 1, · · · , M} be the set of grid points of
a uniform partition of Ω with size h = 1/M.

Then xi = ih and yj = jh, i, j = 0, 1, · · · , M. Let φi,j(t) be the
spatial difference approximation to φ(t, xi, yj).

Let tn = n∆t, n ≥ 0, and ∆t > 0 be the time step, and let φn
i,j be

the full difference approximation to φ(tn, xi, yj).
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Discrete differential operators and BC

Define the discrete differential operators: for 1 ≤ i, j ≤ M− 1,

∇+
x φi,j =

φi+1,j − φi,j

h
, (forward difference)

∇−x φi,j =
φi,j − φi−1,j

h
, (backward difference)

∇+
y φi,j =

φi,j+1 − φi,j

h
, (forward difference)

∇−y φi,j =
φi,j − φi,j−1

h
, (backward difference)

∇0
xφi,j :=

(∇+
x +∇−x

2

)
φi,j, ∇0

yφi,j :=
(∇+

y +∇−y
2

)
φi,j.

(central differences)

Discretize the homogeneous Neumann BC:
∂φ

∂n
= 0 on ∂Ω

φ0,j = φ1,j, φM,j = φM−1,j, φi,0 = φi,1, φi,M = φi,M−1.
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Finite difference discretization: spatial variables

Performing the spatial discretization [Getreuer-2012], we have

∂φi,j

∂t
= δε(φi,j)

{
µ
(
∇−x

∇+
x φi,j√

η2 + (∇+
x φi,j)2 + (∇0

yφi,j)2

+∇−y
∇+

y φi,j√
η2 + (∇0

xφi,j)2 + (∇+
y φi,j)2

)

−ν− λ1(fi,j − c1)
2 + λ2(fi,j − c2)

2
}

,

where i, j = 1, 2, · · · , M− 1.

The purpose of small positive parameter η in the denominators prevents
division by zero.
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Spatial discretization

Define

Ai,j =
µ√

η2 + (∇+
x φi,j)2 + (∇0

yφi,j)2
,

Bi,j =
µ√

η2 + (∇0
xφi,j)2 + (∇+

y φi,j)2
.

Using the fact ∇+
x φi,j =

φi+1,j−φi,j
h , ∇+

y φi,j =
φi,j+1−φi,j

h and taking the
backward difference at Ai,j(φi+1,j − φi,j) and Bi,j(φi,j+1 − φi,j), then the
discretization can be written as

∂φi,j

∂t
= δε(φi,j)

{
1
h2

(
Ai,j(φi+1,j − φi,j)−Ai−1,j(φi,j − φi−1,j)

)
+

1
h2

(
Bi,j(φi,j+1 − φi,j)− Bi,j−1(φi,j − φi,j−1)

)
−ν− λ1(fi,j − c1)

2 + λ2(fi,j − c2)
2
}

.

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Segmentation – 18/36



Temporal discretization

Define

Ãi,j =
1
h2 Ai,j, Ãi−1,j =

1
h2 Ai,j,

B̃i,j =
1
h2 Bi,j, B̃i,j−1 =

1
h2 Bi,j−1.

Time is discretized with a semi-implicit Gauss-Seidel method, values
φi,j, φi−1,j, φi,j−1 are evaluated at time tn+1 and all others at time tn.

φn+1
i,j − φn

i,j

∆t
= δε(φ

n
i,j)

{
Ãi,jφ

n
i+1,j + Ãi−1,jφ

n+1
i−1,j + B̃i,jφ

n
i,j+1 + B̃i,j−1φn+1

i,j−1

−
(

Ãi,j + Ãi−1,j + B̃i,j + B̃i,j−1

)
φn+1

i,j

−ν− λ1(fi,j − c1)
2 + λ2(fi,j − c2)

2
}

.
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Gauss-Seidel scheme

This allows φ at time tn+1 to be solved by one Gauss-Seidel sweep from
left to right, bottom to top:

φn+1
i,j =

{
φn

i,j + ∆tδε(φ
n
i,j)
(

Ãi,jφ
n
i+1,j + Ãi−1,jφ

n+1
i−1,j + B̃i,jφ

n
i,j+1

+B̃i,j−1φn+1
i,j−1 − ν− λ1(fi,j − c1)

2 + λ2(fi,j − c2)
2
)}

×
{

1 + ∆tδε(φi,j)
(

Ãi,j + Ãi−1,j + B̃i,j + B̃i,j−1

)}−1

,

where

Ãi,j =
µ

h2

√
η2 +

(
(φn

i+1,j − φn
i,j)/h

)2
+
(
(φn

i,j+1 − φn+1
i,j−1)/(2h)

)2
,

B̃i,j =
µ

h2

√
η2 +

(
(φn

i+1,j − φn+1
i−1,j)/(2h)

)2
+
(
(φn

i,j − φn
i+1,j)/h

)2
.
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Gauss-Seidel scheme

We can rewrite Ãi,j and B̃i,j as follows:

Ãi,j =
µ

h2

√
η2 +

(
(φn

i+1,j − φn
i,j)/h

)2
+
(
(φn

i,j+1 − φn+1
i,j−1)/(2h)

)2
,

=
(µ/h)√

(hη)2 + (φn
i+1,j − φn

i,j)
2 +

(
(φn

i,j+1 − φn+1
i,j−1)/2

)2
,

B̃i,j =
µ

h2

√
η2 +

(
(φn

i+1,j − φn+1
i−1,j)/(2h)

)2
+
(
(φn

i,j − φn
i+1,j)/h

)2

=
(µ/h)√

(hη)2 +
(
(φn

i+1,j − φn+1
i−1,j)/2

)2
+ (φn

i,j − φn
i+1,j)

2

.

In numerical implementation, we take (hη) = 10−8.

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Segmentation – 21/36



Numerical experiments
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An iterative thresholding scheme

Most image segmentation models incorporate the level set
formulation for solving the associated minimization problems. It
generally results in initial-boundary value problems for PDEs.

We are going to employ an iterative thresholding (IT) scheme for
multi-phase image segmentation based on the Chan-Vese model.

In the IT scheme, total length of C is approximated by a
non-local multi-phase energy constructed based on convolution of
the heat kernel with the characteristic functions of regions.

The IT scheme is divided into two steps. It works by alternating a
thresholding step with an averaging step.
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The approximate Chan-Vese functional

Let f : Ω→ R be the given grayscale image to be segmented.

Suppose f approximately takes n distinct constants c1, · · · , cn in
the disjoint regions Ω1, · · · , Ωn (n-phase partition) with
boundaries C1, · · · , Cn, respectively, that separate Ω.

Let C = ∪n
i=1Ci. Then Ω \ C = ∪n

i=1Ωi.

Let χi be the characteristic function of the desirable region Ωi,

χi(x) =
{

1 x ∈ Ωi,
0 otherwise, and

n

∑
i=1

χi = 1 in Ω \ C.

Let χ = (χ1, χ2, · · · , χn). We define the set S of the characteristic
vector functions by

S =
{

χ ∈ (BV(Ω))n : χi(x) ∈ {0, 1},
n

∑
i=1

χi(x) = 1 ∀x ∈ Ω \ C
}

,

where BV(Ω) is the usual bounded variation space.
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The approximate Chan-Vese functional (cont’d)

In [WLWW-JCP2017], the authors considered the following model:

min
{Ωi},{ci}

n

∑
i=1

(
λ|Ci|+

∫
Ωi

(f (x)− ci)
2 dx

)
.

Let c := (c1, c2, · · · , cn). Then we look for χ∗ and c∗ such that

(χ∗, c∗) = arg min
χ∈S ,c∈Rn

n

∑
i=1

(
λ|Ci|+

∫
Ω

χi(x)gi(x) dx
)

,

where
gi(x) := (f (x)− ci)

2.
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The length of Ci

Let 0 < τ � 1. Define the heat kernel Gτ by

Gτ(x) :=
1

4πτ
exp

(
−
‖x‖2

2
4τ

)
.

Then the length of Ci ∩ Cj can be approximated by (see CPAM-2015)

|Ci ∩ Cj| ≈
√

π

τ

∫
Ω

χi(x)Gτ(x) ∗ χj(x) dx,

where ∗ represents the convolution operation, and therefore

|Ci| ≈
n

∑
j=1,j 6=i

√
π

τ

∫
Ω

χi(x)Gτ(x) ∗ χj(x) dx.

S. Esedoḡlu and F. Otto, Threshold dynamics for networks with
arbitrary surface tensions, Communications on Pure and Applied
Mathematics, 68 (2015), pp. 808-864.
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The approximate energy functional and ICT scheme

The total energy functional can be approximated by

Eτ(χ, c) =
n

∑
i=1

(
λ

n

∑
j=1,j 6=i

√
π

τ

∫
Ω

χi(x)Gτ(x) ∗ χj(x) dx +
∫

Ω
χi(x)gi(x) dx

)
,

and our goal is to solve the following minimization problem:

(χ∗, c∗) = arg min
χ∈S ,c∈Rn

Eτ(χ, c).

The minimization problem can be solved by the ICT scheme, i.e.,
alternatively updating χ and c. Suppose that we have the k-th
iterations for k ≥ 0, χ(k) = (χ

(k)
1 , χ

(k)
2 , · · · , χ

(k)
n ) and c(k), then find

χ(k+1) ∈ S and c(k+1) ∈ Rn sequentially such that

χ(k+1) = arg min
χ∈S

Eτ(χ, c(k)),

c(k+1) = arg min
c∈Rn

Eτ(χ
(k+1), c).

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Segmentation – 27/36



The c-subproblem

Note that the energy functional is given by

Eτ(χ, c) =
n

∑
i=1

(
λ

n

∑
j=1,j 6=i

√
π

τ

∫
Ω

χi(x)Gτ(x) ∗ χj(x) dx +
∫

Ω
χi(x)gi(x) dx

)
.

Then

min
c∈Rn
Eτ(χ

(k+1), c) = min
c∈Rn

∫
Ω

χ
(k+1)
i (x)(f (x)− ci)

2 dx

Letting
∂

∂ci

∫
Ω

χ
(k+1)
i (x)(f (x)− ci)

2 dx = 0,

we have

−2
∫

Ω
χ
(k+1)
i (x)(f (x)− ci) dx = 0 =⇒ ci =

∫
Ω χ

(k+1)
i (x)f (x) dx∫

Ω χ
(k+1)
i (x) dx

.
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The χ-subproblem

Consider the χ-subproblem:

χ(k+1) = arg min
χ∈S

Eτ(χ, c(k)).

Note that the minimization problem is a non-convex problem since
the characteristic function set S is not a convex set. In order to
circumvent this drawback, we define the convex hull K of S by

K =
{

χ ∈ (BV(Ω))n : 0 ≤ χi(x) ≤ 1,
n

∑
i=1

χi(x) = 1 ∀x ∈ Ω \ C
}

.

Then we consider the convex relaxed minimization problem instead:

min
χ∈K
Eτ(χ, c(k)).
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The χ-subproblem (cont’d)

In [WLWW-JCP2017], the authors proved that:

Assume that χ∗ ∈ K is a minimizer of Eτ(χ, c(k)) on K, i.e.,

Eτ(χ
∗, c(k)) = min

χ∈K
Eτ(χ, c(k)).

Then χ∗ ∈ S and hence it is also a minimizer of Eτ(χ, c(k)) on S , i.e.,

Eτ(χ
∗, c(k)) = min

χ∈S
Eτ(χ, c(k)).

Another approach is to show that Eτ(χ, c(k)) is a concave functional
on the convex set K. Then minimizers can only be attained at the
boundary points of the convex set K, i.e., the subset S .
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How to solve the χ-subproblem

Linearizing Eτ(χ, c(k)) at χ(k), we obtain

Eτ(χ, c(k)) ≈ Eτ(χ
(k), c(k)) +

n

∑
i=1

∫
Ω

δEτ

δχi

∣∣∣
χ=χ(k)

(
χi(x)− χ

(k)
i (x)

)
dx

:= Eτ(χ
(k), c(k)) +

n

∑
i=1

∫
Ω

ϕ
(k)
i (x)

(
χi(x)− χ

(k)
i (x)

)
dx,

where function ϕ
(k)
i is given by

0 ≤ ϕ
(k)
i (x) := 2λ

√
π

τ

n

∑
j=1,i 6=j

Gτ(x) ∗ χ
(k)
j (x) + g(k)i (x).
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How to solve the χ-subproblem (cont’d)

Dropping the constant terms in Eτ(χ, c(k)), then the χ-subproblem
becomes

χ(k+1) = arg min
χ∈K

n

∑
i=1

∫
Ω

ϕ
(k)
i (x)χi(x) dx.

Because ϕ
(k)
i (x) ≥ 0 and χi(x) ≥ 0 for all x ∈ Ω, the minimizer χ(k+1)

of the above problem can be easily attained at

χ
(k+1)
i (x) =

{
1, if ϕ

(k)
i (x) = min

1≤`≤n
ϕ
(k)
` (x),

0, otherwise,

for i = 1, 2, · · · , n and x ∈ Ω \ C.
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Numerical experiment #1
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Numerical experiment #2
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Numerical experiment #3
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Numerical experiment #4
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