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Outline of “variational image deblurring”

In this lecture, we will give a brief introduction to the topics:
@ The blurring kernels of motion blur and Gaussian blur.

@ The standard total variation model for variational image deblurring.

The material of this lecture is mainly based on

@ T. F. Chan and C.-K. Wong, Total variation blind deconvolution,
IEEE Transaction on Image Processing, 7 (1998), pp. 370-375.

@ Y. Wang, W. Yin, and Y. Zhang, A fast algorithm for image
deblurring with total variation regularization, CAAM Technical
Report TR 07-10, 2007, Rice University.
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Blurry and noisy image restoration

@ Image restoration (.14 1£75): One of the important tasks in
image processing is to recover images from noisy and blurry
observations.

To recover a sharp image from its blurry observation is the problem
known as image deblurring (F18 ZA5H).

@ These blurring artifacts may come from different sources, such
as atmospheric turbulence, diffraction ($84T), optical defocusing,
camera shaking, and more.

@ The blurry and noisy observation is generally modeled as
flx) = (Ka)(x) +n(x), x€Q,

where 7 is the clean image, 7 is the Gaussian noise, and K is a
blurring operator. We may assume the image domain is () and
zero-valued for all x € R? \ Q.
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Linear and shift-invariant blurring operator K

The blurring operator K is typically assumed to be a “linear” and
“shift-invariant” operator, expressed in the convolutional form:

(Ku)(x) = /Qh(x— s)u(s)ds =: (hxu)(x), x€Q,

where % denotes the convolution operation and h is the so-called point spread
function (blurring kernel) associated with the linear blurring operator K.
Therefore, the image deblurring is also called the image deconvolution.

@ Kis linear: Vimagesu and v,and V&, p € R
(K(au+po))(x) = /Q h(x — s) (au(s) + po(s))ds

= - =a(Ku)(x) + B(Kv)(x), VxeQ.
@ K is shift-invariant (‘PSR %): Let g(x) = f(x — ) for T € R%. Then

(Kg)(x) = /]RZ h(x —s)g(s)ds = (h*g)(x) = (gx 1) (x)

= /]Rzg(x—s)h(s)ds: /]sz(x—r—s)h(s)ds
= (fxh)(x—71)=(Kf)(x—1), YVxeQ.
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Creating a 2-D blurring filter H in Matlab

Motion blur:
>> H = fspecial (motion’, len, theta)

returns a filter to approximate the linear motion of a camera by the
length of 1en pixels of the motion, with an angle of theta degrees in
a counterclockwise direction.

The default 1en is 9 pixels and the default theta is 0 degree.

Examples:

>> H = fspecial ('motion’, 5, 45)

0 0 0 0.0501 0.0304

0 0 0.0519 0.1771 0.0501
H= 0 0.0519 0.1771 0.0519 0
0.0501 0.1771 0.0519 0 0
0.0304 0.0501 0 0 0
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Motion blur (cont’d)

>> H = fspecial (‘motion’, 5, 30)
0 0 0.0268 0.1268 0.1464
H = 0 0.1000 0.2000 0.1000 0
0.1464 0.1268 0.0268 0 0
>> H = fspecial (‘motion’, 5, 60)

0 0 0.1464

0 0.1000 0.1268

H = 0.0268 0.2000 0.0268
0.1268 0.1000 0
0.1464 0 0
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A motion filter and blurred image: cameraman

Read image cameraman. png and display it:

>> I = imread(’cameraman.png’);
>> imshow (I);

Create a motion filter and use it to blur the image:

>> H = fspecial ('motion’, 30, 45);
>> motion blur = imfilter (I, H, ’'replicate’);

Display the blurred image:

>> imshow (motion_blur);
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Gaussian blur

>> H = fspecial ('gaussian’, hsize, sigma)

returns a rotationally symmetric Gaussian lowpass filter of size
hsize with standard deviation sigma.

Example:
>> H = fspecial ('gaussian’, 5, 1)
0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
H = 0.0219 0.0983 0.1621 0.0983 0.0219

0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030

Here fspecial creates Gaussian filters using

(242
o 2 2) Hyg(ny,n2)
Hy(ny,np) :=e 20 and H(ny,m) = S=—>".
1 "2
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A Gaussian filter and blurred image: cameraman

Read image cameraman. png and display it:

>> I = imread(’cameraman.png’);
>> imshow (I);

Create a Gaussian filter and use it to blur the image:

>> H = fspecial (gaussian’, 30, 5);
>> gaussianblur = imfilter (I, H, ’'replicate’);

Display the blurred image:

>> imshow (gaussian_blur);
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Blurry and noisy image restoration

The total variation (TV) regularization has become one of the standard
techniques known for preserving sharp discontinuities such as edges and
object boundaries.

Letf : O C R? — R be a given blurry and noisy image. The standard
TV model recovers an image from f by solving the TV/L2 problem:

min [ (Vu(ldv+5 [ ((Ki)(x) (),

where A > 0 is a model parameter, K is a linear blurring operator, u is
the unknown image to be restored, and

Vu(x)| = | Vu(@)|l = \/ (0u/0x)> + (3u/dy)>.

We assume that (Ku)(x) = (h*u)(x) for all x € Q) and the point spread
function h is given.

If both the blur kernel h and the latent sharp image u are unknown, the
problem is called “blind image deblurring” or “blind image deconvolution.”
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The energy functional

Since the energy functional in the TV/L2 problem is convex, u is optimal if
and only if it satisfies the first-order optimality condition. Define the
energy functional

Bl = [ 19u)] + 5 (K@) — ()

For any smooth function # with # = 0 on 9Q), let ®(¢) := E[u + e7],
then we have

2dx.

0 = @(0)= Lo

— lim E[u + ¢ey] — E[u]
de

e=0 &—0 e—0

_ nml(/Q (Vi) + V()] + 5 ((Ku+ eKip)(x) () e

e—0 €
— 19+ 5 () ) — £ ) e

_ (/ Vu(x) +eViy(x)
a |Vu(x) + eV (x)]

im 2 ([ (i) () + 25 (6) () () — £(2) ).

e—0¢€ 2

o Vi (x)dx)
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The Euler-Lagrange equation

Then, by Green’s formula, we obtain

= - . Vu() X X ujx)—J1rx »
0o = [-v v 1)+ A () (Ku) () — £ ()
_ / . Vu)
a3l

W) e
S (7 R + A (K (x) £ ()

for any smooth function # with # = 0 on (), where K* is the adjoint
operator of K. Therefore, we attain the Euler-Lagrange equation,

1(x) + Ay (x)K* ((Ku) (x) — f(x))dx

Vu N B
fv-(w |)+M< (Ku—f) =0 forxeQ,

or equivalently,

Vu . B
V-<w>—/\K (Ku—f)=0 forxe,

along with the Neumann boundary condition, du(x)/dn = 0 on 0Q).
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The adjoint operator

Let V be a real (or complex) Hilbert space with inner product (-, -),
e.g., L*(Q)) with the inner product (f,g) := [, fg dQ.
@ Consider a continuous (i.e., bounded) linear operator T: V — V.
Then the adjoint of T is the continuous linear operator
T* : V — V satisfying
(Tx,y) = (x, T"y), Vxyel.

@ Existence and uniqueness of this operator follows from the Riesz
representation theorem.
Sketch of the proof: Fixed y € V, then f(x) := (Tx,y), ¥ x € V, is a bounded linear functional. By the Riesz
representation theorem, 3 unique zy € V such that (Tx,y) = f(x) = (x,zy). Define T* : V — V by

T*(y) = zy. Then we can show that T* is a linear bounded operator.

@ This can be seen as a generalization of the adjoint matrix of a
square matrix , i.e., the conjugate transpose of a square matrix.
For example, let A € R3*3. Then

(Ax,y) = yTAx = <x,ATy), Vxy e R3.
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What is the adjoint operator K* of K?
Suppose that the linear and shift-invariant blurring operator
K:L*(Q) — L?(Q) is defined as

(Ku)(x) := (h*u)(x) = /Qh(x— s)u(s)ds VxeQ,

where & is the given kernel function.
(Ku,0)12() = /Q (/Q h(x — s)u(s)ds)v(x)dx

= /Qu(s)(/ah(x—s)v(x)dx>ds.

Let hi(x) = h(—x) for all x € R2. Then for all u,v € L2(Q), we have

(, K02y = (Ku,0)p2(qy) :/ u(s) (/()E(s—x)v(x)dx)ds

Q
= <M,h*U>L2(Q).

Therefore, (K*0)(x) = (h*v)(x).
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Nonlinear PDE based image restoration

Consider the E-L equation with the homogeneous BC, % = 0 on 9Q).
Vu
(=) —AK"(Ku—f)=0
v <|W|§) (Ku—f) =0,
where | - |5 := /| - |>+ 62,0 < 6§ < 1, to avoid division by zero.
@ Rudin-Osher (1994) used the artificial time marching method:
Vu ,
A | =—) — AK"(Ku — .
u<—u+ t{V (|Vu\(5) AK* (Ku f)}

This method is very easy to implement but converges slowly
due to the nonlinearity of the diffusion operator.

@ Vogel-Oman (1996) used a lagged diffusivity procedure to partially
overcome this difficulty by solving the following equation for
u("*+1) jteratively:

(n+1)
‘ (Vu
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An equivalent constrained convex problem

By introducing a new variable w(x) := Vu(x), we obtain an
equivalent constrained convex minimization problem:

min [ fw(ldy+5 [ (K@)~ flx) ',

subject to w(x) = Vu(x), x € Q.

Wang-Yin-Zhang (2007) considered the L?-norm-square penalty
formulation to obtain the unconstrained problem:

r&gl/ﬂ|w(x)|dx+%/(')((1<u)(x) —f(x))zdx—i—g/a|w(x)—Vu(x)|2dx,

where B > 0 is a sufficiently large penalty parameter in order to
approximate the solution of the original problem.
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The discrete form of the unconstrained problem

Suppose that f = [f;] is an N x N digital image. Let us consider the
discrete form of the unconstrained problem:

min Z lwijll + 5 IIKM f||p+ Z 17 1) — wyl%,

uw = 2,4
where K is the discrete convolution operator, || - || is the Euclidean
norminIR?, ie., || - || := | - ||, and || - || is the Frobenius norm,
w1);i
2)ij

Moreover, 91 denotes the forward finite difference operator,

a+u).. U; PRy
a+ J— ( 1 ij ) _ < i+1, ij ) c ]R;
( u)l] ( (a;u)zj ul,]+l uz]
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An alternating method

We will solve the discrete problem by alternately minimizing the
objective function with respect to w while fixing u, and vice versa.

w-subproblem: For a fixed u, we solve
N
- p 0012
min X (Irogl + 5 llew; = @+ u)17),
which permits a closed-form solution
1 ) (9% u)j

7/0 T/t 1 ]-SZ/]/SN/
B

[(@Fu);ll’
where we follow the convention that 0 - (0/0) := 0. The computation
complexity is of order O(N?).

wy = max (|07 u)ll -
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An alternating method (cont’d)

u-subproblem: For a fixed w = (wy,w;) ', we solve the following
problem with a special structure:

LA
min 2 K — 1+ & 7 1 — w4+ £ 05 u — wall,

where Ku = H * u with a given blurring filter H, 9, u = [(9; 1) ],
w1 = [(w1);], and so on, and all are matrices in RN*N,

Therefore, we can solve a linear least-squares problem in the form:

A
min | |B|u— | | |3
wo

where u, f, w1, and w; are vectorization of [u;], [f;j], [w1;], and [wy;],
respectively. However, the linear least-squares solver (by solving the
normal equations, or using the QR decomposition, or using the SVD) has
high complexity, leading to significant costs!
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u-subproblem: an FFT-based algorithm

We can use the FFT to solve the u-subproblem:

@ Since K, a1+, 8; are all discrete convolutions, if we transform the
u-subproblem into the Fourier domain, then these operations
become element-wise products, e.g., F (H x u) = F(H) o F(u).

@ Since the Fourier transform preserves the Frobenius norm, we
obtain an equivalent problem (set v := B/A):

min || F(H) o F(u) = F(F)|[F + I F @) 0 F(u) — Fwr)|F
+7|1F(@5) o F(u) = F(wa) 13-

@ After solving for F(u) (using first-order optimality condtion),
we obtain the solution to the u-subproblem by

F(H)* o F(f) +v(F (9 )* o Fwy) + F(95)* o F(wy)) )
F(H)* o F(H) +(F (3] )* o F(3y ) + F (33 )* 0 F(35)) /”

u:]-'fl(

where “*” denotes complex conjugacy and the division is
element-wise. Therefore, it requires two ffts and one ifft per iteration.
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Selection of model parameters

@ Noisy level control parameter A: An appropriate A should give
a solution u satisfying

IKu —fII? ~ ||[Kii — f||* = 0* = Var(n).

@ Constraint penalty parameter 5: Parameter 5 cannot be too
small because it would allow Vu = w to be violated excessively.
However, B cannot be too large either because the larger the § is
the less updates applied to w and u, making the algorithm take
more iterations. Therefore, we should choose f§ in a continuation
way to balance the speed and accuracy.

@ Prescribed maximum value ,4,: The initial value of 8 is
relatively small (e.g., B = 4). Then B is increased (e.g., doubled)
until a prescribed maximum value By is reached (e,g, 220y,
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Numerical experiments

% creat a blurring filter

>> H = fspecial (‘motion’, 41, 135)

% add Gaussian white noise with mean 0 and variance 103
>> f = imnoise(original, ’‘gaussian’, 0, le-3)

Original image size = 512x512 Blurry image (SNR 5.9065) Blurry and noisy image (SNR 5.5328)

2=10(SNR 7.2649)
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Numerical experiments

% creat a blurring filter

>> H = fspecial ('gaussian’, 41, 10)

% add Gaussian white noise with mean 0 and variance 10~°
>> f = imnoise(original, ’‘gaussian’, 0, le-6)

Original image size = 512x512 Blurry image (SNR 6.2287) Blurry and noisy image (SNR 6.2262)

A =10000({SNR 9.6682) A =50000(SNR 10.6387) 2 =250000(SNR 11.2205)
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Total variation blind deconvolution

Chan-Wong (1998) formulated the blind deconvolution problem as

1
min / ((hxu)(x) —f(x))zdx + / |Vu(x)|dx + txz/ |Vh(x)|dx,
uh @) JQO (@)

where the use of TV regularization for the blurring kernel / is due to
the fact that some blurring kernels can have edges.

The first-order optimality conditions give

u(—x) x (uxh)(x) —f(x)) —aV - (|th§|) =0, xe€Q,
h(—x) % ((h*u)(x) —f(x)) —aq V - (gzgxw =0, xcQ.

These are the associated Euler-Lagrange equations, which should be
supplemented with the homogeneous Neumann boundary
conditions: % = 0and % = 0 on Q).

A further study is needed!
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