

MA3111: Mathematical Image Processing

Principal Component Pursuit

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University
Jhongli District, Taoyuan City 320317, Taiwan

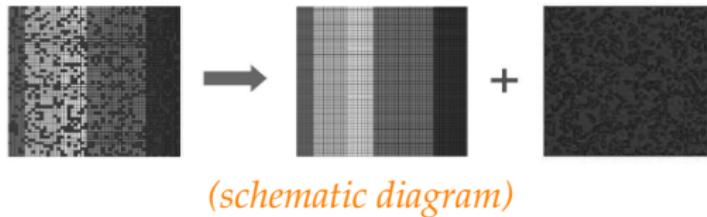
First version: September 30, 2022/Last updated: July 3, 2025

Sparse plus low rank matrix decomposition

Let $M \in \mathbb{R}^{m \times n}$ be a given grayscale image. Suppose that M is the superposition of a low-rank component L and a sparse component S ,

$$M = L + S.$$

We are interested in finding the low-rank image L , which has high repeatability along horizontal or vertical directions.



The *sparse plus low rank decomposition problem* can be formulated as the constrained minimization problem:

$$\min_{L,S} (\text{rank}(L) + \lambda \|S\|_0) \quad \text{subject to} \quad M = L + S,$$

where $\lambda > 0$ is a tuning parameter and $\|S\|_0$ denotes the number of non-zero entries in S . *The problem is not convex.*

The principal component pursuit problem

We approximate the sparse plus low rank decomposition problem by the following *principal component pursuit (PCP) problem*:

$$\min_{\mathbf{L}, \mathbf{S}} (\|\mathbf{L}\|_* + \lambda \|\mathbf{S}\|_1) \quad \text{subject to} \quad \mathbf{M} = \mathbf{L} + \mathbf{S},$$

where $\|\mathbf{L}\|_*$ is the nuclear (Ky Fan/樊“土畿”) norm of \mathbf{L} defined as

$$\|\mathbf{L}\|_* := \sum_{i=1}^r \sigma_i,$$

and $r \in \mathbb{N}^+$ is the rank of \mathbf{L} and σ_i are the singular values of \mathbf{L} , and $\|\mathbf{S}\|_1$ denotes the ℓ^1 -norm of \mathbf{S} (*seen as a long vector in \mathbb{R}^{mn}*),

$$\|\mathbf{S}\|_1 := \sum_{i,j} |S_{ij}|.$$

★ *How about the existence of solution for the PCP problem?*
(cf. Candès-Li-Ma-Wright, J. ACM, 2011)

The penalty formulation and alternating direction method

Let $\mu > 0$ be the penalty parameter. Then we consider the relaxation using a penalty term to replace the constraint,

$$\min_{L, S} \left(\|L\|_* + \lambda \|S\|_1 + \frac{\mu}{2} \|M - L - S\|_F^2 \right),$$

where $\|\cdot\|_F$ is the Frobenius norm. We set, for example, $S^{(0)} = \mathbf{0}$. The ADM for the penalty formulation is given as follows: for $k \geq 0$, find

$$L^{(k+1)} = \arg \min_L \left(\|L\|_* + \lambda \|S^{(k)}\|_1 + \frac{\mu}{2} \|M - L - S^{(k)}\|_F^2 \right),$$

$$S^{(k+1)} = \arg \min_S \left(\|L^{(k+1)}\|_* + \lambda \|S\|_1 + \frac{\mu}{2} \|M - L^{(k+1)} - S\|_F^2 \right).$$

By further analysis given below (pages 7-15), we can prove that

$$L^{(k+1)} = \text{SVT}_{\frac{1}{\mu}}(M - S^{(k)}),$$

$$S^{(k+1)} = \text{sign}(M - L^{(k+1)}) \odot \max \{ |M - L^{(k+1)}| - (\lambda / \mu), 0 \},$$

where \odot is the Hadamard product (i.e., element-wise product).

- **Singular value decomposition (SVD):** Let $M \in \mathbb{R}^{m \times n}$. The SVD of M is the factorization in the form

$$M = U\Sigma V^\top,$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices ($UU^\top = I$ and $VV^\top = I$) and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal with all non-negative entries called the singular values of M .

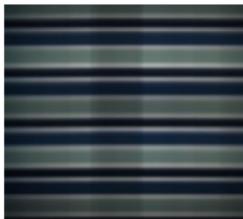
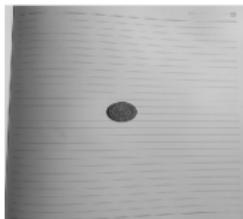
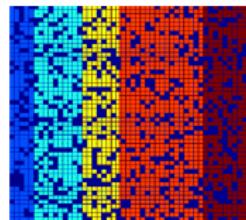
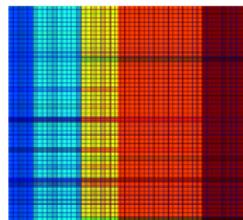
- **Singular value thresholding (SVT):** Let $M \in \mathbb{R}^{m \times n}$. Suppose that the SVD of M is given by $M = U\Sigma V^\top$. Then the singular value thresholding of M with threshold $\tau > 0$ is defined by

$$SVT_\tau(M) = UD_\tau(\Sigma)V^\top,$$

where

$$D_\tau(\Sigma)_{ii} = \max\{\Sigma_{ii} - \tau, 0\}, \quad \forall i = 1 : \min\{m, n\}.$$

Background recovering using the penalty method



Von Neumann trace inequality

First, we state without proof the square matrix case.

Theorem: *If A and B are complex $n \times n$ matrices with singular values*

$$\begin{aligned}\sigma_1(A) &\geq \sigma_2(A) \geq \cdots \geq \sigma_n(A) \geq 0, \\ \sigma_1(B) &\geq \sigma_2(B) \geq \cdots \geq \sigma_n(B) \geq 0.\end{aligned}$$

Then we have

$$|\langle A, B \rangle_F| := |\text{trace}(A^*B)| \leq \sum_{i=1}^n \sigma_i(A)\sigma_i(B).$$

Moreover, the equality holds if A and B share the same singular vectors.

Notes:

- If $A = U\Sigma V^*$ then $A^* = V\Sigma U^*$, having the same singular values $\sigma_i(A^*) = \sigma_i(A)$, $\forall 1 \leq i \leq n$. $\therefore |\text{trace}(AB)| \leq \sum_{i=1}^n \sigma_i(A)\sigma_i(B)$.
- “Prove = if ...”: If A and B share the same singular vectors, say $A = U\Sigma_A V^*$ and $B = U\Sigma_B V^*$, then we have $A^*B = V(\Sigma_A\Sigma_B)V^* = V(\Sigma_B\Sigma_A)V^* = B^*A = (A^*B)^*$, Hermitian! $\therefore \text{trace}(A^*B) = \sum_{i=1}^n \lambda_i(A^*B) = \sum_{i=1}^n \sigma_i(A)\sigma_i(B) \geq 0$.

Von Neumann trace inequality for rectangular matrices

Corollary: *Let A and B be complex $m \times n$ matrices with singular values*

$$\begin{aligned}\sigma_1(A) &\geq \sigma_2(A) \geq \cdots \geq \sigma_k(A) \geq 0, \\ \sigma_1(B) &\geq \sigma_2(B) \geq \cdots \geq \sigma_k(B) \geq 0,\end{aligned}$$

where $k := \min\{m, n\}$. Then we have

$$|\langle A, B \rangle_F| := |\text{trace}(A^*B)| \leq \sum_{i=1}^k \sigma_i(A)\sigma_i(B).$$

Moreover, the equality holds if A and B share the same singular vectors.

Proof: Assume that $m > n$. Then $k := \min\{m, n\} = n$. We define two $m \times m$ matrices X and Y by

$$X = [A \mid \mathbf{0}]_{m \times m} \quad \text{and} \quad Y = [B \mid \mathbf{0}]_{m \times m}.$$

Then we have

$$|\langle X, Y \rangle_F| = |\text{trace}(X^*Y)| = |\text{trace}(A^*B)| = |\langle A, B \rangle_F|.$$

Proof of Von Neumann's trace inequality (cont'd)

Claim: $\sigma_i(X) = \sigma_i(A)$ and similarly, $\sigma_i(Y) = \sigma_i(B)$, $\forall i = 1, 2, \dots, n$.

Suppose that the SVD of A is given by $A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^*$.

Define three $m \times m$ matrices,

$$U_X = U_{m \times m}, \quad \Sigma_X = [\Sigma_{m \times n} \mid \mathbf{0}]_{m \times m}, \quad V_X^* = \begin{bmatrix} V_{n \times n}^* & \mathbf{0} \\ \mathbf{0} & I \end{bmatrix}_{m \times m}.$$

Then we have

$$\begin{aligned} U_X \Sigma_X V_X^* &= U_{m \times m} [\Sigma_{m \times n} \mid \mathbf{0}] \begin{bmatrix} V_{n \times n}^* & \mathbf{0} \\ \mathbf{0} & I \end{bmatrix} \\ &= [U_{m \times m} \Sigma_{m \times n} \mid \mathbf{0}] \begin{bmatrix} V_{n \times n}^* & \mathbf{0} \\ \mathbf{0} & I \end{bmatrix} \\ &= [U_{m \times m} \Sigma_{m \times n} V_{n \times n}^* \mid \mathbf{0}] = [A_{m \times n} \mid \mathbf{0}] = X, \end{aligned}$$

which implies that $\sigma_i(X) = \sigma_i(A)$, $\forall i = 1, 2, \dots, n$. Therefore,

$$|\langle A, B \rangle_F| = |\langle X, Y \rangle_F| \leq \sum_{i=1}^n \sigma_i(X) \sigma_i(Y) = \sum_{i=1}^n \sigma_i(A) \sigma_i(B). \quad \square$$

SVT $_{\tau}$ (Y) Theorem

Theorem: Given an $m \times n$ real matrix \mathbf{Y} and $\tau > 0$, we have

$$\text{SVT}_{\tau}(\mathbf{Y}) = \arg \min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \left(\tau \|\mathbf{X}\|_* + \frac{1}{2} \|\mathbf{X} - \mathbf{Y}\|_F^2 \right).$$

Proof: Let $k := \min\{m, n\}$. Then for any $\mathbf{X} \in \mathbb{R}^{m \times n}$, we have

$$\begin{aligned} \frac{1}{2} \|\mathbf{X} - \mathbf{Y}\|_F^2 &= \frac{1}{2} \text{tr}((\mathbf{X} - \mathbf{Y})^\top (\mathbf{X} - \mathbf{Y})) \\ &= \frac{1}{2} \text{tr}(\mathbf{X}^\top \mathbf{X}) - \text{tr}(\mathbf{X}^\top \mathbf{Y}) + \frac{1}{2} \text{tr}(\mathbf{Y}^\top \mathbf{Y}) \\ &= \frac{1}{2} \sum_{i=1}^n \lambda_i(\mathbf{X}^\top \mathbf{X}) + \frac{1}{2} \sum_{i=1}^n \lambda_i(\mathbf{Y}^\top \mathbf{Y}) - \text{tr}(\mathbf{X}^\top \mathbf{Y}) \\ &\geq \frac{1}{2} \sum_{i=1}^k \sigma_i^2(\mathbf{X}) + \frac{1}{2} \sum_{i=1}^k \sigma_i^2(\mathbf{Y}) - \sum_{i=1}^k \sigma_i(\mathbf{X}) \sigma_i(\mathbf{Y}) \\ &= \frac{1}{2} \sum_{i=1}^k (\sigma_i(\mathbf{X}) - \sigma_i(\mathbf{Y}))^2. \end{aligned}$$

Proof of the $SVT_\tau(\mathbf{Y})$ Theorem (cont'd)

Therefore, we obtain for any $\mathbf{X} \in \mathbb{R}^{m \times n}$,

$$F(\mathbf{X}) := \tau \|\mathbf{X}\|_* + \frac{1}{2} \|\mathbf{X} - \mathbf{Y}\|_F^2 \geq \tau \|\mathbf{X}\|_* + \frac{1}{2} \sum_{i=1}^k (\sigma_i(\mathbf{X}) - \sigma_i(\mathbf{Y}))^2 =: G(\mathbf{X}).$$

It is already known that for a given $\tau > 0$ and a fixed $y \in \mathbb{R}$, the minimizer of the real-valued function,

$$f(x) = \tau|x| + \frac{1}{2}(y - x)^2, \quad x \in \mathbb{R},$$

is given by *the soft-thresholding operator* \mathcal{S}_τ ,

$$\arg \min_{x \in \mathbb{R}} f(x) = \mathcal{S}_\tau(y) := \text{sign}(y) \max\{|y| - \tau, 0\}.$$

Also note that $\|\mathbf{X}\|_* = \sum_{i=1}^k \sigma_i(\mathbf{X})$. Therefore, we find the fact that

$$\begin{aligned} \hat{\mathbf{X}} = \arg \min_{\mathbf{X} \in \mathbb{R}^{m \times n}} G(\mathbf{X}) &\Leftrightarrow \sigma_i(\hat{\mathbf{X}}) = \mathcal{S}_\tau(\sigma_i(\mathbf{Y})) \\ &= \text{sign}(\sigma_i(\mathbf{Y})) \max\{|\sigma_i(\mathbf{Y})| - \tau, 0\} \\ &= \max\{\sigma_i(\mathbf{Y}) - \tau, 0\}, \quad \forall i = 1, 2, \dots, k. \end{aligned}$$

SVT $_{\tau}$ (Y) Theorem (cont'd)

Based on the above observation, we are going to construct such a matrix $\widehat{\mathbf{X}}$ which has the same singular vectors with \mathbf{Y} . Suppose that the SVD of \mathbf{Y} is given by $\mathbf{Y} = \mathbf{U}\Sigma\mathbf{V}^{\top}$. Define the diagonal matrix $\widehat{\Sigma}$ by

$$\widehat{\Sigma} := \begin{bmatrix} \ddots & & \\ & \max\{\sigma_i(\mathbf{Y}) - \tau, 0\} & \\ & & \ddots \\ & & & \end{bmatrix}_{m \times n}$$

and then define $\widehat{\mathbf{X}} := \mathbf{U}\widehat{\Sigma}\mathbf{V}^{\top} = SVT_{\tau}(\mathbf{Y})$. Therefore, *the equality in Von Neumann's trace inequality holds*, and we have

$$\tau\|\widehat{\mathbf{X}}\|_* + \frac{1}{2}\|\widehat{\mathbf{X}} - \mathbf{Y}\|_F^2 = \tau\|\widehat{\mathbf{X}}\|_* + \frac{1}{2}\sum_{i=1}^k (\sigma_i(\widehat{\mathbf{X}}) - \sigma_i(\mathbf{Y}))^2 = \min_{\mathbf{X} \in \mathbb{R}^{m \times n}} G(\mathbf{X}).$$

That is, we attain a minimum of $F(\mathbf{X})$ at $\widehat{\mathbf{X}} = SVT_{\tau}(\mathbf{Y})$.

$F(X)$ is a strictly convex function in $X \in \mathbb{R}^{m \times n}$

Note that $F(X)$ is a strictly convex function in $X \in \mathbb{R}^{m \times n}$, since

- $\|X - Y\|_F^2$ is strictly convex in $X \in \mathbb{R}^{m \times n}$.
- $\|X\|_*$ is convex in $X \in \mathbb{R}^{m \times n}$, since it is a norm.
- “convex function + strictly convex function” is strictly convex.

Suppose that \hat{X}_1 and \hat{X}_2 are two different minimizers of the strictly convex function $F(X)$. Then

$$F\left(\frac{1}{2}(\hat{X}_1 + \hat{X}_2)\right) < \frac{1}{2}F(\hat{X}_1) + \frac{1}{2}F(\hat{X}_2) = F(\hat{X}_1), \text{ a contradiction!}$$

Therefore, the minimizer of $F(X)$ is unique! This completes the proof of the theorem. \square

Another direct proof of the uniqueness of minimizer $\widehat{\mathbf{X}}$

Claim: *The minimizer of $F(\mathbf{X})$ is unique, that is, $\widehat{\mathbf{X}} = SVT_\tau(\mathbf{Y})$.*

Proof: Suppose that $\widehat{\mathbf{X}}_1$ and $\widehat{\mathbf{X}}_2$ are two different minimizers of $F(\mathbf{X})$. By the triangle inequality, we have

$$\begin{aligned} \tau \left\| \frac{\widehat{\mathbf{X}}_1 + \widehat{\mathbf{X}}_2}{2} \right\|_* + \frac{1}{2} \left\| \frac{\widehat{\mathbf{X}}_1 + \widehat{\mathbf{X}}_2}{2} - \mathbf{Y} \right\|_F^2 \\ \leq \frac{\tau}{2} \left\| \widehat{\mathbf{X}}_1 \right\|_* + \frac{\tau}{2} \left\| \widehat{\mathbf{X}}_2 \right\|_* + \frac{1}{2} \left\| \frac{\widehat{\mathbf{X}}_1 - \mathbf{Y}}{2} + \frac{\widehat{\mathbf{X}}_2 - \mathbf{Y}}{2} \right\|_F^2. \quad (*) \end{aligned}$$

Note that

$$\left(\frac{a}{2} + \frac{b}{2} \right)^2 = \frac{a^2}{2} + \frac{b^2}{2} - \left(\frac{a-b}{2} \right)^2, \quad \forall a, b \in \mathbb{R}.$$

Therefore, we obtain

$$\begin{aligned} RHS(*) &= \frac{\tau}{2} \left\| \widehat{\mathbf{X}}_1 \right\|_* + \frac{\tau}{2} \left\| \widehat{\mathbf{X}}_2 \right\|_* + \frac{1}{4} \left\| \widehat{\mathbf{X}}_1 - \mathbf{Y} \right\|_F^2 + \frac{1}{4} \left\| \widehat{\mathbf{X}}_2 - \mathbf{Y} \right\|_F^2 \\ &\quad - \frac{1}{2} \left\| \frac{\widehat{\mathbf{X}}_1 - \widehat{\mathbf{X}}_2}{2} \right\|_F^2 = \tau \left\| \widehat{\mathbf{X}}_1 \right\|_* + \frac{1}{2} \left\| \widehat{\mathbf{X}}_1 - \mathbf{Y} \right\|_F^2 - \underbrace{\frac{1}{2} \left\| \frac{\widehat{\mathbf{X}}_1 - \widehat{\mathbf{X}}_2}{2} \right\|_F^2}_{>0}, \end{aligned}$$

a contradiction!

Solution of the ADM for penalty formulation

By the $SVT_{\tau}(Y)$ Theorem, we have

$$\mathbf{L}^{(k+1)} := \arg \min_{\mathbf{L}} \left(\|\mathbf{L}\|_* + \frac{\mu}{2} \|\mathbf{M} - \mathbf{L} - \mathbf{S}^{(k)}\|_F^2 \right) = \text{SVT}_{\frac{1}{\mu}}(\mathbf{M} - \mathbf{S}^{(k)}).$$

Using the soft-thresholding operator \mathcal{S}_{τ} , we have

$$\begin{aligned} \mathbf{S}^{(k+1)} &:= \arg \min_{\mathbf{S}} \left(\lambda \|\mathbf{S}\|_1 + \frac{\mu}{2} \|\mathbf{M} - \mathbf{L}^{(k+1)} - \mathbf{S}\|_F^2 \right) \\ &= \text{sign}(\mathbf{M} - \mathbf{L}^{(k+1)}) \odot \max \{ |\mathbf{M} - \mathbf{L}^{(k+1)}| - (\lambda/\mu), 0 \}, \end{aligned}$$

where \odot is the Hadamard element-wise product.

Another approach for solving the PCP problem

Recall the principal component pursuit problem:

$$\min_{L,S} (\|L\|_* + \lambda \|S\|_1) \quad \text{subject to} \quad M = L + S.$$

The augmented Lagrangian function is defined as

$$\begin{aligned} \mathcal{L}(L, S, Y) &:= \|L\|_* + \lambda \|S\|_1 + \underbrace{\langle \underbrace{Y}_{\text{multiplier}}, M - L - S \rangle}_{\text{penalty}} + \underbrace{\frac{\mu}{2} \|M - L - S\|_F^2}_{\text{penalty}} \\ &= \|L\|_* + \lambda \|S\|_1 + \frac{\mu}{2} \|M - L - S + \mu^{-1} Y\|_F^2 - \frac{1}{2\mu} \|Y\|_F^2. \end{aligned}$$

We then apply the alternating direction method to minimize the augmented Lagrangian function $\mathcal{L}(L, S, Y)$. *The resulting method is called the augmented Lagrange multiplier (ALM) method. When L and S are further updated in an alternating way, it is also called the alternating direction method of multipliers (ADMM).*

The augmented Lagrange multiplier method

The ALM method is given by

$$\mathbf{L}^{(k+1)} := \arg \min_{\mathbf{L}} \left(\|\mathbf{L}\|_* + \lambda \|\mathbf{S}^{(k)}\|_1 + \frac{\mu}{2} \|\mathbf{M} - \mathbf{L} - \mathbf{S}^{(k)} + \mu^{-1} \mathbf{Y}^{(k)}\|_F^2 \right.$$

$$\left. - \frac{1}{2\mu} \|\mathbf{Y}^{(k)}\|_F^2 \right),$$

$$\mathbf{S}^{(k+1)} := \arg \min_{\mathbf{S}} \left(\|\mathbf{L}^{(k+1)}\|_* + \lambda \|\mathbf{S}\|_1 + \frac{\mu}{2} \|\mathbf{M} - \mathbf{L}^{(k+1)} - \mathbf{S} + \mu^{-1} \mathbf{Y}^{(k)}\|_F^2 \right.$$

$$\left. - \frac{1}{2\mu} \|\mathbf{Y}^{(k)}\|_F^2 \right),$$

$$\mathbf{Y}^{(k+1)} := \mathbf{Y}^{(k)} + \mu (\mathbf{M} - \mathbf{L}^{(k+1)} - \mathbf{S}^{(k+1)}).$$

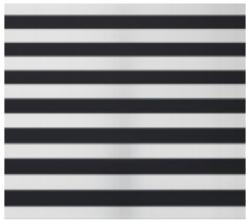
The explicit form of the iterative solution $(\mathbf{L}^{(k+1)}, \mathbf{S}^{(k+1)}, \mathbf{Y}^{(k+1)})$ of ALM method is presented on the next page, which can be proved by using *the SVT _{τ} (\mathbf{Y}) Theorem and the soft-thresholding operator S_{τ}* .

Iterative solutions of the ALM method

The iterative solution $(\mathbf{L}^{(k+1)}, \mathbf{S}^{(k+1)}, \mathbf{Y}^{(k+1)})$ of the ALM method is given by

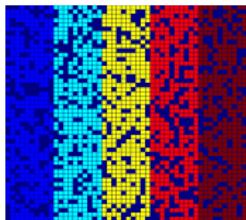
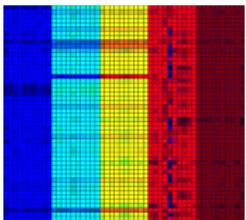
$$\begin{aligned}\mathbf{L}^{(k+1)} &:= \arg \min_{\mathbf{L}} \left(\|\mathbf{L}\|_* + \frac{\mu}{2} \|\mathbf{L} - (\mathbf{M} - \mathbf{S}^{(k)} + \mu^{-1} \mathbf{Y}^{(k)})\|_F^2 \right) \\ &= \arg \min_{\mathbf{L}} \left(\frac{1}{\mu} \|\mathbf{L}\|_* + \frac{1}{2} \|\mathbf{L} - (\mathbf{M} - \mathbf{S}^{(k)} + \mu^{-1} \mathbf{Y}^{(k)})\|_F^2 \right) \\ &= \textcolor{red}{SVT}_{\frac{1}{\mu}}(\mathbf{M} - \mathbf{S}^{(k)} + \mu^{-1} \mathbf{Y}^{(k)}), \\ \mathbf{S}^{(k+1)} &:= \arg \min_{\mathbf{S}} \left(\lambda \|\mathbf{S}\|_1 + \frac{\mu}{2} \|\mathbf{S} - (\mathbf{M} - \mathbf{L}^{(k+1)} + \mu^{-1} \mathbf{Y}^{(k)})\|_F^2 \right) \\ &= \arg \min_{\mathbf{S}} \left(\frac{\lambda}{\mu} \|\mathbf{S}\|_1 + \frac{1}{2} \|\mathbf{S} - (\mathbf{M} - \mathbf{L}^{(k+1)} + \mu^{-1} \mathbf{Y}^{(k)})\|_F^2 \right) \\ &= \textcolor{red}{\text{sign}}(\mathbf{M} - \mathbf{L}^{(k+1)} + \mu^{-1} \mathbf{Y}^{(k)}) \\ &\quad \odot \max \left\{ |\mathbf{M} - \mathbf{L}^{(k+1)} + \mu^{-1} \mathbf{Y}^{(k)}| - (\lambda / \mu), 0 \right\}, \\ \mathbf{Y}^{(k+1)} &:= \textcolor{red}{\mathbf{Y}^{(k)} + \mu(\mathbf{M} - \mathbf{L}^{(k+1)} - \mathbf{S}^{(k+1)})}.\end{aligned}$$

Background recovering using the ALM method

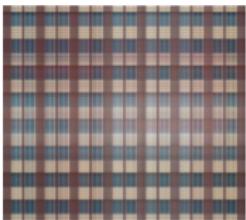


$$(\lambda, \mu) = (0.0007, 0.5)$$

$$(\lambda, \mu) = (0.006, 5)$$



$$(\lambda, \mu) = (0.007525, 0.04)$$



$$(\lambda, \mu) = (0.0025, 1.5)$$

References

- ① E. J. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis? *Journal of the ACM*, 58 (2011), Article 11.
- ② X. Ren and Z. Lin, Linearized alternating direction method with adaptive penalty and warm starts for fast solving transform invariant low-rank textures, *International Journal of Computer Vision*, 104, (2013), pp.1-14.
- ③ Z. Lin, R. Liu, and Z. Su, Linearized alternating direction method with adaptive penalty for low-rank representation, *Proceedings of the 24th International Conference on Neural Information Processing Systems*, 2011, pp. 612-620.