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Sparse plus low rank matrix decomposition

Let M € R™*" be a given grayscale image. Suppose that M is the
superposition of a low-rank component L and a sparse component S,
M=L+S.

We are interested in finding the low-rank image L, which has high
repeatability along horizontal or vertical directions.

(schematic diagram)

The sparse plus low rank decomposition problem can be formulated as the
constrained minimization problem:

rrgisn(rank(L) + A||S]lo) subjectto M =L+S,

where A > 0 is a tuning parameter and ||S||o denotes the number of
non-zero entries in S. The problem is not convex.
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The principal component pursuit problem
We approximate the sparse plus low rank decomposition problem by
the following principal component pursuit (PCP) problem:

rilgn(\|L\|*+A||S|\1) subjectto M =L+S,

where ||L||. is the nuclear (Ky Fan/#" 1 #") norm of L defined as
y

r
L]l =} o,
i=1

and r € N is the rank of L and o; are the singular values of L, and
[|S||1 denotes the ¢'-norm of S (seen as a long vector in R™"),

18]l :=Y_ISjl-
ij
* How about the existence of solution for the PCP problem?
(cf. Candes-Li-Ma-Wright, J. ACM, 2011)

(© Suh-Yuh Yang (#57#8), Math. Dept., NCU, Taiwan Principal Component Pursuit - 3/20



The penalty formulation and alternating direction method

Let u > 0 be the penalty parameter. Then we consider the relaxation
using a penalty term to replace the constraint,

. H Q2
min(|[L]. +AlIS]l + 5|M L S|),

where || - || is the Frobenius norm. We set, for example, $(*) = 0. The
ADM for the penalty formulation is given as follows: for k > 0, find
. L
L = argmin (L] + AS® s + Z M - L - s ),
st = argmin (L% + AlIs|ly + FlIM — LD — s|12).
s

By further analysis given below (pages 7-15), we can prove that

L*D = gvr, (M —st),

u"
St = sign(M — LYY @ max {|M — L&Y — (A/p), 0},

where © is the Hadamard product (i.e., element-wise product).

(© Suh-Yuh Yang (7 [&), Math. Dept., NCU, Taiwan Principal Component Pursuit —4/20



SVD and SVT

@ Singular value decomposition (SVD): Let M € R"*". The SVD
of M is the factorization in the form

M=UxV',

where U € R™ ™ and V € R™ " are orthogonal matrices (UU ' = I

and VVT = 1) and £ € R"™*" is diagonal with all non-negative
entries called the singular values of M.

@ Singular value thresholding (SVT): Let M € R™*". Suppose that
the SVD of M is given by M = ULV ". Then the singular value
thresholding of M with threshold T > 0 is defined by

SVT:(M) = UD-(Z)V',
where
D:(X); = max{Z; —7, 0}, Vi=1:min{m,n}.
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Background recovering using the penalty method
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Von Neumann trace inequality

First, we state without proof the square matrix case.
Theorem: If A and B are complex n x n matrices with singular values
01(A) > 02(A) > -+ > 0y(A) >0,
01(B) =2 02(B) = - -+ > 0u(B) = 0.
Then we have ;
|(A,B)p| := |trace(A™B)| < ZUi(A)Ui(B)-
Moreover, the equality holds if A and B share lt?ule same singular vectors.
Notes:
@ IfA=UZV* thenA* = VZLI* having the same singular values
0i(A*) =0i(A), Y1 <i<n. .. |trace(AB)| <Y} ,0i(A)oi(B).
@ “Prove =if ...”: If A and B share the same singular vectors, say
A =UZX,V* and B = UXgV*, then we have
A*B = V(Z,E5)V* = V(Z3E4)V* = B*A = (A*B)*, Hermitian!
" trace(A*B) =Y. 1 Ai(A*B) = Y1, 0i(A)0;(B) > 0.
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Von Neumann trace inequality for rectangular matrices

Corollary: Let A and B be complex m x n matrices with singular values

01(A) > (A) > -+ > 0 (A) >0,
01(B) > 02(B) > - -+ > 0x(B) > 0,

where k := min{m,n}. Then we have
k

(A, B)p| := |trace(A*B)| < ) _ 0;(A)0;(B).
i=1
Moreover, the equality holds if A and B share the same singular vectors.

Proof: Assume that m > n. Then k := min{m, n} = n. We define two
m x m matrices X and Y by

Then we have

[(X,Y)F| = |trace(X"Y)| = |trace(A*B)| = |(A, B)F|.
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Proof of Von Neumann’s trace inequality (cont’d)

Claim: 0;(X) = 0;(A) and similarly, 0;(Y) = 0;(B),Vi=1,2,--- ,n.

Suppose that the SVD of A is given by Ayixn = WinsomZmxn Vi
Define three m x m matrices,

. Visn O
UX = Wuxm, z:X = [men | O}mxm/ VX = 0 I .
mxm

Then we have
* Vikn 0
UXZXVX = umxm[zmxn | 0] 0 i
v 0
== [umxmzmxn | 0] [ ;an I :|
= [umxmzmxnvzxn | 0] = [Amxn | 0] = X,
which implies that 0;(X) = 0;(A),Vi=1,2,-- - ,n. Therefore,

(A, B)e| = | (X, V)| < éaxxm(v) - émmwm. 0
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SVT:(Y) Theorem

Theorem: Given an m X n real matrix Y and T > 0, we have

SVT.(Y) = argmin(THXH* +

1
SIX—Y|).
XGR)VIXH

Proof: Let k :== min{m,n}. Then for any X € R"*", we have

%HX —Y|} = %tr((X -V (X-Y)
= 1tr(XTx) —tr(XTY) + %tr(YTY)

A(XTX) + % f A(YTY) —tr(XTY)

Il
N = N
vmm

: lzkl : ] i=1 L
> Y 2(X)+ 5 YY) - Y a(X)ai(Y)
25 2iA =1
k
= 1Y - amy’
i=1
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Proof of the SVT;(Y) Theorem (cont’d)

Therefore, we obtain for any X € R™*",
1 1& 2
F(X) = X4 3 X = YIE > X+ 5 3 (03(X) ~ 0:())” = G(X).
i=1

It is already known that for a given T > 0 and a fixed y € R, the
minimizer of the real-valued function,
fx) =7l + 3y - 22 xER,
is given by the soft-thresholding operator Sr,
argmin f(x) = S-(y) := sign(y) max{|y| -7, 0}.

xeR
Also note that || X||. = Y5_, 0;(X). Therefore, we find the fact that
X =argmin G(X) < 0;(X) = Sc(0;(Y))
XGRYIIXVI .
= sign(0;(Y)) max{|o;(Y)| — 7, 0}
=max{c;(Y) -1, 0}, Vi=1,2,--- ,k
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SVT:(Y) Theorem (cont’d)

Based on the above observation, we are going to construct such a
matrix X which has the same singular vectors with Y. Suppose that
the SVD of Y is given by Y = UZV . Define the diagonal matrix E by

max{c;(Y) — 7,0}

[P
I

mxn

and then define X := ULV = SVT,(Y). Therefore, the equality in
Von Neumann's trace inequality holds, and we have

S 1.5 < 1 S 2 .
K+ 51K~ YIE = K]+ 5 Y (%)~ () = min G(X).
i=1
That is, we attain a minimum of F(X) at X = SVT(Y).
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F(X) is a strictly convex function in X € R"*"

Note that F(X) is a strictly convex function in X € R™*", since
@ || X — Y||?is strictly convex in X € R"™*".
@ ||X]|« is convexin X € R™*", since it is a norm.
@ “convex function + strictly convex function” is strictly convex.

Suppose that X; and X, are two different minimizers of the strictly
convex function F(X). Then

F(%(Xl + X)) < %F(X’l) + %F(}AQ) = F(X;), a contradiction!

Therefore, the minimizer of F(X) is unique! This completes the proof
of the theorem. [
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Another direct proof of the uniqueness of minimizer X

Claim: The minimizer of F(X) is unique, that is, X = SVT(Y).

Proof: Suppose that X; and X» are two different minimizers of F(X).
By the triangle inequality, we have

5\(1 —f—)?z X1 +X2
==l *II - Y|
- 1,X-Y Xo—Y,,
< SRl + IRl + 31T+ 2T R (x)
Note that
a b\2 > 1 a—b\2
(§+§) —E‘Fj—( 5 ), Vﬂ,bE]R.
Therefore, we obtain
T,s T,s 1,5 1, ~
RHS(x) = *I\X1II*+*||X2||*+*IIX1—Y||§+Z||X2—Y||12:
- 1,.X;-X,
—*II ||F_T||X1||* *||X1—YH12:—§|I?H%/
\/_/
a contradlctmn! >0
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Solution of the ADM for penalty formulation

By the SVT{(Y) Theorem, we have

L) .= argznin(||L||* + %HM —L—s® ||12:) = SVT% (M — s,
Using the soft-thresholding operator S;, we have

skt . — argsmin()\HSHl + %HM — L) S||12_-)

= sign(M — L)) © max {|M — L*D| — (A/p), 0},

where © is the Hadamard element-wise product.
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Another approach for solving the PCP problem

Recall the principal component pursuit problem:

nLusn(HLH* + A||S|l1) subjectto M =L+S.

The augmented Lagrangian function is defined as

L(L,S,Y)
— B 2
= |ILll«+ASIL+( Y, M—L—S>+§HM—L—S||F
multiplier e
penalty

_ 1
= [[L[l« + AllS]l + %HM— L—S+u 'Y[§~ EHYH%-

We then apply the alternating direction method to minimize the
augmented Lagrangian function £(L,S,Y). The resulting method is
called the augmented Lagrange multiplier (ALM) method. When L and S
are further updated in an alternating way, it is also called the alternating
direction method of multipliers (ADMM).
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The augmented Lagrange multiplier method

The ALM method is given by

L o= argmin (|L+AIS® + SlIv - L — 89 45 YO 2
L
1
—— y®)2
2V IE).
sk = argmin(|[LUD |+ AlIS]ly + M — 0D — 54+ 1y 02
S
1
— 1y 2
2V IE).
yk+) .y u(M — L) 5(k+1))'

The explicit form of the iterative solution (L) glkt1) y(kt1)y of
ALM method is presented on the next page, which can be proved by
using the SVT(Y) Theorem and the soft-thresholding operator S+.
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Iterative solutions of the ALM method

The iterative solution (L*+1, §k+1) y(+1)) of the ALM method is
given by

k) argznin(”LH* + %HL — (M- sk + ],{—1Y(k))||12:>
1 1
_ (1 Liur _ _ g 1y (k)y 12
arglr‘nm(y||L||*+2||L (M—S% +uY )HF)
= SVTy (M —S® 4 1y®),
I

S = argmin( S| + 1S — (M~ 1Y+ ) )

. (A 1 _
= argmin( 7 [S]l1 + 51 — (M — L& 4 1YW )
s H

= sign(M — L&D 45~ 1y(0)
®max {|M — L%V 4 u=1y® | —(A/p), 0},
Y(k+1) = Y(k) 4 H(M _ L(k-‘rl) _ S(k+l)>
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Background recovering using the ALM method
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